
Xplor-NIH Tutorial

Charles Schwieters
Center for Information Technology

National Institutes of Health

Bethesda, MD USA

1

outline
1. description, history, installation

2. Scripting Languages: XPLOR, Python, TCL
• Introduction to Python

3. Overview of an Xplor-NIH Python script

4. Potential terms available from Python

5. IVM: dynamics and minimization in internal coordinates

6. Parallel determination of multiple structures

7. VMD molecular graphics interface

8. line-by-line analysis of an Xplor-NIH script.

9. refinement against solution scattering data.

10. ensemble refinement for a dynamical representation.

11. The PASD facility for automatic NOE assignment

goal of this session:

Xplor-NIH’s Python interface will be introduced, described in enough detail such that scripts

can be understood, and modified.

2

Major Contributors

John Kuszewski Robin Thottungal

Marius Clore Kirsten Frank

Nico Tjandra Yaroslav Ryabov

Support:

Andy Byrd, Yun-Xing Wang, Ad Bax

developed in the Imaging Sciences Laboratory, DCB, CIT, NIH

3

Overview of structure determination

?

correct structureunknown atom positions
Minimize energy: Vtot = Vnoe + Vbond + Vrepel + . . .

• molecular dynamics to explore the energy
surface.

• slowly decrease the temperature to find
the global minimum.

• surface smoothed at high temperature

correct
structure

hi
gh

er
 e

ne
rg

y

initial high temperature

C
oo

l

4

What is Xplor-NIH?
Biomolecular structure determination/manipulation
• Determine structure using minimization protocols based on molecular dynamics/ simulated

annealing.

• Potential energy terms:
– terms based on input from NMR (and other) experiments: NOE, dipolar coupling,

chemical shift data, SAXS, SANS, fiber diffraction, etc.
– other potential terms enforce reasonable covalent geometry (bonds and angles).
– knowledge-based potential terms incorporate info from structure database.

• includes: program, topology, covalent parameters , potential energy parameters, databases
for knowledge-based potentials, helper programs, example scripts, and high level protocols
for structure determination and analysis.

• freely available for non-commercial work. Source code is available.

• For commercial use, please contact mailto:Charles@Schwieters.org.

5

mailto:Charles@Schwieters.org

Xplor-NIH Description

New contributions, additions are encouraged.
Source code of Xplor-NIH:
• original XPLOR Fortran source, with contributions from many groups.

• current work uses C++ for compute-intensive work.

• scripts and much code are written in Python, TCL scripting languages.

• SWIG used to “glue” scripting languages to C++.

• bazaar repository of source code is available online.

6

Installation
1. download two files from http://nmr.cit.nih.gov/xplor-nih/

a) a -db file: e.g. xplor-nih-2.20-db.tar.gz

b) a platform-specific file: e.g. xplor-nih-2.20-Linux_2.4_i686.tar.gz

2. unpack these files where you wish them to live:
zcat xplor-nih-2.20-db.tar.gz | (cd /opt ; tar xf -)

zcat xplor-nih-2.20-Linux_2.4_i686.tar.gz | (cd /opt ; tar xf -)

3. perform initial configuration:
cd /opt/xplor-nih-2.20

./configure -symlinks /usr/local/bin

(the -symlinks option creates symbolic links in the specified directory for xplor and other

commands - it is not necessary.)

4. test the new installation:
bin/testDist

7

http://nmr.cit.nih.gov/xplor-nih/

Scripting Languages- three choices
scripting language:
• flexible interpreted language
• used to input filenames, parameters, protocols
• flexible enough to program non compute-intensive logic
• relatively user-friendly

XPLOR language:

strong point:

atom selection language quite powerful.

weaknesses:

String, Math support problematic.

no support for subroutines: difficult to encapsulate functionality.

Parser is hand-coded in Fortran: difficult to update.

XPLOR reference manual:

http://nmr.cit.nih.gov/xplor-nih/doc/current/xplor/

NOTE: all old XPLOR 3.851 scripts should run unmodified with Xplor-NIH.

8

http://nmr.cit.nih.gov/xplor-nih/doc/current/xplor/

Language Examples - printing 1..10

XPLOR Python TCL

eval ($i=1)

while ($i le 10) loop ploop

display $i

eval ($i=$i+1)

end loop ploop

for i in range(1,11):

print i

for {set i 1}

{$i<11}

{incr i} {

puts $i

}

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

9

general purpose scripting languages: Python and TCL
• excellent string support.

• languages have functions and modules: can be used to better encapsulate protocols (e.g.

call a function to perform simulated annealing.)

• well known: these languages are useful for other computing needs: replacements for AWK,
shell scripting, etc.

• contain extensive libraries with additional functionality (e.g. file processing, web access,
GUI library, etc).

• Facilitate interaction, tighter coupling with other tools.
– NMRWish has a TCL interface.
– pyMol has a Python interface.
– VMD has TCL and Python interfaces.

separate processing of input files (assignment tables) is unnecessary: can all be done using

Xplor-NIH.

10

Introduction to Python
assignment and strings
a = ’a string’ # <- pound char introduces a comment

a = "a string" # ’ and " chars have same functionality
multiline strings - use three ’ or " characters
a = ’’’a multiline

string’’’

C-style string formatting - uses the % operator

s = "a float: %5.2f an integer: %d" % (3.14159, 42)

print s
a float: 3.14 an integer: 42
raw strings - special characters are not translated
a = r’strange characters: \%~!’ # introduced by an r

lists and tuples
l = [1,2,3] #create a list

a = l[1] #indexed from 0 (a = 2)

l[2] = 42 # l is now [1,2,42]

t = (1,2,3) #create a tuple (read-only list)

a = t[1] # a = 2

t[2] = 42 # ERROR!

11

Introduction to Python
calling functions
bigger = max(4,5) # max is a built-in function

defining functions - leading whitespace scoping
def sum(item1,item2,item3=0):

"return the sum of the arguments" # comment string

retVal = item1+item2+item3 # note indentation

return retVal

print sum(42,1) #un-indented line: not in function

43

using keyword arguments - specify arguments using the argument name
print sum(item3=2,item1=37,item2=3) # argument order is not important
42

loops - the for statement
for cnt in range(0,3): # loop over the list [0,1,2]

cnt += 10

print cnt

10

11

12

12

Introduction to Python
Python is modular

most functions live in separate namespaces called modules

Loading modules - the import statement

import sys #import module sys

sys.exit(0) #call the function exit in module sys

or:

from sys import exit #import exit function from sys into current scope

exit(0) #don’t need to prepend sys.

13

Introduction to Python
In Python objects are everywhere.

Objects: associated functions called methods

file = open("filename") #open is built-in function returning an object

contents = file.read() #read is a method of this object

returns a string containing file contents

dir(file) # list all methods of object file

[’__class__’, ’__delattr__’, ’__doc__’, ’__getattribute__’,

’__hash__’, ’__init__’, ’__iter__’, ’__new__’, ’__reduce__’,

’__repr__’, ’__setattr__’, ’__str__’, ’close’, ’closed’, ’fileno’,

’flush’, ’isatty’, ’mode’, ’name’, ’read’, ’readinto’, ’readline’,

’readlines’, ’seek’, ’softspace’, ’tell’, ’truncate’, ’write’,

’writelines’, ’xreadlines’]

14

Introduction to Python
A mapping type: Dictionaries
d={}

d[’any’] = 4 #elements indexed like arrays

d[’string’] = 5 # but the index can be (almost) any type

print d[’string’]

5

d.keys() #return list of all index keys

d.values() #return list of all indexed values

Tools for List Processing:
map - convert one list to another list:
map(int, [’1’,’2’,’3’]) # apply int() function to list of strings

[1, 2, 3]

lambda - a simple function with no name
twoTimes=lambda x: 2*x # define twoTimes to be a lambda function

twoTimes(3)
6

lambdas are useful when used with map:
map(lambda c: 2*int(c), [’1’,’2’,’3’]) # convert string list to ints

with multiplication
[2, 4, 6]

15

Linear Algebra Facilities in Python

from cdsMatrix import RMat, transpose, inverse

from cdsMatrix import svd, trace, det, eigen

m=RMat([[1,2], #create a matrix object

[3,4]])

print m

print m[0,1] #element access

m[0,1]=3.14 #element assignment

print trace(m) #matrix trace

print det(m) #determinant

print transpose(m)#matrix transpose

print inverse(m) #matrix inverse

print 0.5*m # multiplication by scalar

print m+m,m-m # matrix addition, subtraction

print m*m # matrix multiplication

from cdsVector import CDSVector_double as vector

from cdsVector import norm

v=vector([1,2]) # vectors

print norm(v) # vector norm

print 2*v,v+v,v-v # vector arithmetic

print m*v # matrix multiplication

#singular value decomposition

r= svd(m)

print r.u, r.vT, r.sigma

#eigenvalue decomposition

e= eigen(m)

print e[0].value() #first eigenvalue

print list(e[0].vector()) #first eigenvector

16

Introduction to Python
interactive help functionality: dir() is your friend!

import sys

dir(sys) #lists names in module sys

dir() # list names in current (global) namespace

dir(1) # list of methods of an integer object

the help function

import ivm

help(ivm) #help on the ivm module

help(open) # help on the built-in function open

browse the Xplor-NIH python library using your web-browser on your local workstation:

% xplor -py -pydoc -g

Xplor-NIH Python module reference:

http://nmr.cit.nih.gov/xplor-nih/doc/current/python/ref/index.html

17

http://nmr.cit.nih.gov/xplor-nih/doc/current/python/ref/index.html

Python in Xplor-NIH
current status: low-level functionality (similar to that of XPLOR script) implemented.

mostly implemented: high-level wrapper functions which will encode default values, and hide

complexity.

future: develop repository of still-higher level protocols to further simplify structure

determination.

stability: Python interface fairly stable. Small changes possible.

18

Accessing Xplor-NIH’s Python interpreter
from the command-line: use the -py flag:
% xplor -py

XPLOR-NIH version 2.20

C.D. Schwieters, J.J. Kuszewski, based on X-PLOR 3.851 by A.T. Brunger

N. Tjandra, and G.M. Clore

J. Magn. Res., 160, 66-74 (2003). http://nmr.cit.nih.gov/xplor-nih

python>

or the pyXplor executable - a bit quieter- and can be used as a complete replacement for the
python command:
% pyXplor

python>

or as an extension to an external Python interpreter:
% (eval ‘xplor -csh-env‘ ; python)

Python 2.4.4 (#1, Oct 26 2006, 10:23:26)
[GCC 3.4.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import xplorNIH
>>> execfile(’script.py’)

[requires that Python version be consistent between the external interpreter and Xplor-NIH.]

19

accessing Python from XPLOR: PYTHon command

% xplor

XPLOR-NIH version 2.20

C.D. Schwieters, J.J. Kuszewski, based on X-PLOR 3.851 by A.T. Brunger

N. Tjandra, and G.M. Clore

J. Magn. Res., 160, 66-74 (2003). http://nmr.cit.nih.gov/xplor-nih

User: schwitrs on: khaki (x86/Linux) at: 7-Dec-06 12:37:40

X-PLOR>python !NOTE: can’t be used inside an XPLOR loop!

python> print ’hello world!’

hello world!

python> python_end()

X-PLOR>

for a single line: CPYThon command

X-PLOR>cpython "print ’hello world!’" !can be used in a loop

hello world!

X-PLOR>

20

using XPLOR, TCL from Python
to call the XPLOR interpreter from Python

xplor.command(’’’struct @1gb1.psf end

coor @1gb1.pdb’’’)

xplor is a built-in module - no need to import it for simple scripts.

to call the TCL interpreter from Python

from tclInterp import TCLInterp #import function

tcl = TCLInterp() #create TCLInterp object

tcl.command(’xplorSim setRandomSeed 778’) #initialize random seed

21

Structure Calculation Overview: Script Skeleton
import protocol
protocol.loadPDB("model.pdb") #initialize coordinates

coolParams=[] # a list which specifies potential smoothing
set up potential terms from NMR experiments, covalent geometry,
and knowledge-based terms

initialize coolParams for annealing protocol for each energy term

from ivm import IVM #configure which degrees of freedom to optimize
dyn = IVM()

from simulationTools import AnnealIVM
coolLoop=AnnealIVM(dyn,...) #create simulated annealing object

def calcOneStructure(structData):
""" a function to calculate a single structure """
[randomize velocities]
[perform high temp dynamics]
dyn.run()
[cooling loop]
coolLoop.run()
[final minimization]
dyn.run()
structData.writeStructure(potList) #write out pdb record to file

with energies, rmsd’s in headers
a separate .viols file also written

from simulationTools import StructureLoop
StructureLoop(numStructures=100, #calculate all structures

pdbTemplate=’SCRIPT_STRUCTURE.sa’, # in parallel, if desired
structLoopAction=calcOneStructure).run() #also report stats at end

22

Loading and Generating Coordinates
PSF file - contains atomic connectivity, mass and covalent geometry information.

This information must be present before coordinates can be loaded.

generate via external helper scripts

1. seq2psf - generate a psf file from primary sequence

% seq2psf file.seq

2. pdb2psf - generate a psf file from a pdb file

% pdb2psf file.pdb

within the Python scripting interface (in the protocol module)
• protocol.initStruct - load pregenerated .psf file
• protocol.initCoords - read pdb file
• protocol.loadPDB - read pdb and generate psf info on the fly

To delete atoms whose positions aren’t defined (but are in the psf):
xplor.simulation.deleteAtoms("not known")

23

Loading and Generating Coordinates - details
initial atomic coordinate values: (x,y,z) = (9999.999, 9999.999, 9999.999)

these are the values if coordinates are not initialized

a Simulation object contains atom name, position, mass, etc and bonding information

The default Simulation is xplor.simulation

A completely separate PSF can be loaded by creating a new XplorSimulation:
from xplorSimulation import XplorSimulation

new_xsim = XplorSimulation()

import protocol

protocol.initStruct(’other.psf’,simulation=new_xsim)

each XplorSimulation has a separate XPLOR process associated with it.

to add atoms whose coordinates are not defined:
from protocol import addUnknownAtoms

addUnknownAtoms()

to correct covalent Geometry (bonds, angles and impropers):
from protocol import fixupCovalentGeom

fixupCovalentGeom(’resid 30:50’) # this may cause significant changes in

the selected atomic positions

24

Atom Selections in Python
use the XPLOR atom selection language, described in the XPLOR manual.
from atomSel import AtomSel

sel = AtomSel(’’’resid 22:30 and

(name CA or name C or name N)’’’)

print sel.string() #AtomSel objs remember their selection string

resid 22:30 and

(name CA or name C or name N)

AtomSel objects can be used as lists of Atom objects

print len(sel) # prints number of atoms in sel

for atom in sel: # iterate through atoms in sel

print atom.string(), atom.pos() # prints atom string, and its position.

AtomSel objects can be reevaluated:

xplor.simulation.deleteAtoms("resid 1:2")

sel.reevaluate()

print len(sel) # prints the correct number of atoms

25

http://nmr.cit.nih.gov/xplor-nih/doc/current/xplor/node38.html

Using potential terms in Python
available potential terms in the following modules:

1. noePot - NOE distance restraints
2. rdcPot - dipolar coupling
3. csaPot - Chemical Shift Anisotropy
4. jCoupPot - 3J-coupling
5. prePot - Paramagnetic relaxation enhancement
6. gyrPot - pseudopotential enforcing correct protein density
7. residueAffPot - contact potential for hydrophobic attraction/repulsion
8. cstMagPot - refine against chemical shift tensor magnitudes
9. planeDistPot - distance between atoms and plane

10. xplorPot - use XPLOR potential terms
11. solnScatPot - potential for solution X-ray and neutron scattering
12. posSymmPot - restrain atomic positions relative to those in a similar structure
13. potList - a collection of potential terms in a list-like object.

all potential objects have the following methods:

instanceName() - name given by user

potName() - name of potential term, e.g. ”RDCPot”

scale() - scale factor or weight

setScale(val) - set this weight

calcEnergy() - calculate and return term’s energy

26

NOE potential term
most commonly used effective NOE distance (sum averaging):

R = (
∑

ij

|qi − qj |
−6)−1/6

potential energy: piecewise quadratic

“Square potential”

V (R) =















(R − d − dmax)2 forR > d + dmax

(R − d + dmin)2 forR < d − dmax

0 in between

d = 4.0
dmin = 2.2
dmax = 1.0

0

1

2

3

4

en
er

gy
en

er
gy

0 1 2 3 4 5 6 7

R (Å)R (Å)

XPLOR assignment statement

assign (resid 2 and name HA)(resid 19 and name HB#) 4.0 2.2 1.0 !#

27

NOE potential term
creating an NOEPot object:
from noePotTools import create_NOEPot

noe = create_NOEPot("noe","noe_all.tbl")

#noe.setPotType("soft") #uncomment if bad NOE restraints may be present

use:
print noe.instanceName() # prints ’noe’

print noe.potName() # prints ’NOEPot’

noe.setAveExp(5) # change exponent for 1/r^6 sum

a reduced value reduces barriers

print noe.rms() # the rmsd from the allowed distance range

noe.setThreshold(0.1) # violation threshold

print noe.violations() # number of violations

print noe.showViolations()

28

residual dipolar coupling potential
Provides orientational information relative to axis fixed in molecule frame.

DAB = Da[(3u2
z − 1) +

3

2
R(u2

x − u2
y)] ,

ux, uy, uz- projection of bond vector onto axes of an alignment tensor. Da, R- measure of axial

and rhombic tensor components.

rdcPot (in Python)
• tensor orientation encoded in four axis atoms
• allows Da, R to vary: values encoded using

extra atoms.
• reads both SANI and DIPO XPLOR assignment

tables.
• allows multiple assignments for bond-vector

atoms - for averaging.
• allows ignoring sign of Da (optional)
• can (optionally) include distance dependence:

Da ∝ 1/r3.
• tensor values can be computed using SVD.

ANI500:Y

ANI500:PA2

ANI500:Z

ANI500:PA1

ANI500:X

→can also be used for paramagnetic pseudocontact shift experiments.

29

How to use the rdcPot potential

from varTensorTools import create_VarTensor, calcTensor

ptensor = create_VarTensor(’phage’) #create a tensor object

ptensor.setDa(7.8) #set initial tensor Da, rhombicity

ptensor.setRh(0.3)

ptensor.setFreedom(’varyDa, varyRh’) #allow Da, Rh to vary

from rdcPotTools import create_RDCPot

rdcNH = create_RDCPot("NH",oTensor=ptensor,file=’NH.tbl’)

calcTensor(ptensor) #calc tensor parameters from current structure

#using SVD

NOTE: no need to have psf files or coordinates for axis/parameter atoms- this is automatic.

analysis, accessing potential values:
print rdcNH.rms(), rdcNH.violations() # calculates and prints rms, violations
print ptensor.Da(), ptensor.Rh() # prints these tensor quantities
rdcNH.setThreshold(0) # violation threshold
print rdcNH.showViolations() # print out list of violated terms
from rdcPotTools import Rfactor
print Rfactor(rdcNH) # calculate and print a quality factor

30

RDCPot: additional details
using multiple media:
btensor=create_VarTensor(’bicelle’)

rdcNH_2 = create_RDCPot("NH_2",tensor=btensor,file=’NH_2.tbl’)

#[set initial tensor parameters]

btensor.setFreedom(’fixAxisTo phage’) #orientation same as phage

#Da, Rh vary

multiple expts. single medium:
rdcCAHA = create_RDCPot("CAHA",oTensor=ptensor,file=’CAHA.tbl’)
rdcCAHA is a new potential term using the same alignment tensor as rdcNH.

Scaling convention: scale factor of non-NH terms is determined using the experimental error
relative to the NH term:
scale_toNH(rdcCAHA,’CAHA’) #rescales RDC prefactor relative to NH

Use harmonic potential with correct relative scaling
scale = (5/2)**2

^ inverse error in expt. measurement relative to that for NH

rdcCAHA.setScale(scale)

31

Chemical Shift Anisotropy potential
Provides additional orientational information from the full chemical shift tensor from

measurements in an aligning medium.

∆δ =
∑

i,j

Aiσj cos2(θi,j)

Ai - a principal moment of the alignment tensor

σj - a principal moment of the CSA tensor

θi,j - angle between the ith orientation tensor principal axis and the jth CSA tensor principal

axis.

How to use the csaPot potential
from csaPotTools import create_CSAPot

csaP = create_CSAPot(name,oTensor=tensor,file=’csaP.tbl’)

csaP.setDaScale(val) # s.t. can be used with RDC alignment tensor

csaP.setScale(forceConstant)

calcTensor(tensor) #use if the structure is approximately correct

NOTE: create_CSAPot uses built-in values for the chemical shift tensor. Alternate values can

be specified by modifying csaPotTools.csaData.

32

J-coupling potential
Karplus relationship

3J = A cos2(θ + θ∗) + B cos(θ + θ∗) + C,

θ is a torsion angle, defined by four atoms.

A, B, C and θ∗ are set using the COEF statement in the j-coupling assignment table (or using

object methods).

Use in Python
from jCoupPotTools import create_JCoupPot

set Karplus parameters while creating the potential term.

jCoup = create_JCoupPot("hnha","jna_coup.tbl",

A=15.3,B=-6.1,C=1.6,phase=0)

analysis:

print Jhnha.rms()

print Jhnha.violations()

print Jhnha.showViolations()

33

Gyration Volume potential - a pseudopotential
NOE distance restraints: approximate, loose.

Result: determined structures are too

loosely packed.

But: Proteins pack to a constant density

of 1.43±0.03 g cm−3

Approximate protein shape as ellipsoidal:

gyration tensor:

G =
1

N

N
∑

i=1

∆qi ⊗ ∆qi,

gyration volume Vg ≡ 4/3π
√

|G|

Predict

Vg ≈ V res
g Nres,

A

0

5000

10000

15000

V
g

(Å
3
)

V
g

(Å
3
)

0 100 200 300 400 500 600 700 800

NresNres

B

0

10

20

30

N
um

be
r

of
S

tr
uc

tu
re

s
N

um
be

r
of

S
tr

uc
tu

re
s

8 10 12 14 16 18 20 22 24

Vg/Nres (Å3)Vg/Nres (Å3)

0

10

20

30

8 10 12 14 16 18 20 22 24

34

TheVg potential

Egyr = wgyr

(

w(1)
gyrEp(Vg − V res

g ; 0)

+w(2)
gyrEp(Vg − V res

g ; ∆Vg)
)

Ep(x,∆x) =















(x − ∆x)2 for x > ∆x

(x + ∆x)2 for x < −∆x

0 otherwise

Example of use of this term:

from gyrPotTools import create_GyrPot

gyr = create_GyrPot(’Vgyr’,’not resname ANI’)

potList.append(gyr)

35

using XPLOR potentials
The XPLOR non-bonded potential
import protocol

from xplorPot import XplorPot

protocol.initNBond(repel=1.2) #specify nonbonded parameters

vdw = XplorPot(’VDW’)

print vdw.violations() #print number of overlapping atom pairs

print vdw.calcEnergy() #term’s energy

print vdw.potName() # ’XplorPot’

print vdw.instanceName() # ’VDW’

all other access/analysis done from XPLOR interface.

All parameters for the nonbonded term are listed in the XPLOR manual

The XPLOR RAMA (torsion angle database) potential
import protocol

from xplorPot import XplorPot

protocol.initRamaDatabase()

potList.append(XplorPot(’RAMA’))

Other commonly used XPLOR terms: BOND, ANGL, IMPR, HBDA, CDHI.

36

http://nmr.cit.nih.gov/xplor-nih/xplorMan/node117.html

Enumeration of XPLOR potential terms

• 3J couplings

• 1J couplings

• 13C shifts
• 1H shifts
• radius of gyration

• chemical shift anisotropy

• conformational database torsion angle potentials

• database residue-residue and base-base positioning potentials

• Generalized Born implicit solvent (Tom Simonson - Strasbourg) .

• PARArestraints module for including paramagnetism-based NMR restraints in refinement
(Bertini’s group - Italy)

• isac code for floating RDC alignment tensor (Grzesiek’s group, Basel)

• vectang pot. for indirect RDC restraints (Michael Nilges’ group)

• hbda pot.- empirical bb H-bond relationship

• hbdb pot.- precise database for for bb H-bonds (A. Grishaev. - NIH)

37

collections of potentials - PotList
potential term which is a collection of potentials:

from potList import PotList

pots = PotList()

pots.append(noe); pots.append(Jhnha); pots.append(rGyr)

pots.calcEnergy() # total energy

nested PotLists:

rdcs = PotList(’rdcs’) #convenient to collect like terms

rdcs.append(rdcNH); rdcs.append(rdcNH_2)

rdcs.setScale(0.5) #set overall scale factor

pots.append(rdcs)

for pot in pots: #pots looks like a Python list

print pot.instanceName()noe

hnha

COLL

rdcs

38

Implementing a new potential term - in Python
from pyPot import PyPot ; from vec3 import norm
class BondPot(PyPot):

’’’ example class to evaluate energy, derivs of a single bond
’’’
def __init__(self,name,atom1,atom2,length,forcec=1):

’’’ constructor - force constant is optional.’’’
PyPot.__init__(self,name) #first call base class constructor
self.a1 = atom1 ; self.a2 = atom2
self.length = length; self.forcec = forcec
return

def calcEnergy(self):
self.q1 = self.a1.pos() ; self.q2 = self.a2.pos()
self.dist = norm(q1-q2)
return 0.5 * self.forcec * (dist-self.length)**2

def calcEnergyAndDerivs(self,derivs):
energy = self.calcEnergy()
deriv1 = map(lambda x,y:x*y,

[self.forcec * (self.dist-self.length) / self.dist]*3 ,
(self.q1[0]-self.q2[0],

self.q1[1]-self.q2[1],
self.q1[2]-self.q2[2]))

derivs[self.a1.index()] = deriv1
derivs[self.a2.index()] = -deriv1
return energy

pass

to use:

p = BondPot(’bond’,AtomSel(’resid 1 and name C’)[0],
AtomSel(’resid 1 and name O’)[0], length=1.5)

39

The IVM (internal variable module)
Used for dynamics and minimization

in biomolecular NMR structure determination, many internal coordinates are known or

presumed to take usual values:

• bond lengths, angles- take values from high-resolution crystal structures.

• aromatic amino acid side chain regions - assumed rigid.

• nucleic acid base regions - assumed rigid.

• refinement against RDC data can’t distort covalent geometry.

• non-interfacial regions of protein and nucleic acid complexes (component structures may be
known- only interface needs to be determined)

Can we take advantage of this knowledge (find the minima more efficiently)?

• can take larger MD timesteps (without high freq bond stretching)

• configuration space to search is smaller:
Ntorsion angles ∼ 1/3NCartesian coordinates

• don’t have to worry about messing up known coordinates.

40

Hierarchical Refinement of the Enzyme II/ HPr
complex

active degrees of freedom are displayed in yellow.

41

MD in internal coordinates is nontrivial
Consider Newton’s equation:

F = Ma

for MD, we need a, the acceleration in internal coordinates, given forces F .

Problems:

• express forces in internal coordinates

• solve the equation for a.

In Cartesian coordinates a is (vector of) atomic accelerations. M is diagonal.

In internal coordinates M is full and varies as a function of time: solving for a scales as

N3
internal coordinates.

Solution: comes to us from the robotics community. Involves clever solution of Newton’s

equation: The molecule is decomposed into a tree structure, a is solved for by iterating from

trunk to branches, and backwards.

Xplor-NIH implementation: C.D. Schwieters and G.M. Clore; J. Magn. Reson. 152, 288-302 (2001).
A copy of the IVM paper with some corrections is available at http://nmr.cit.nih.gov/xplor-nih/doc/intVar.pdf

42

http://nmr.cit.nih.gov/xplor-nih/doc/intVar.pdf

Tree Structure of a Molecule

TYR3:CG

TYR3:CD1

1a

2a

3a

4a

5a

6a

7a

8a

9a

10a

11a

12a
13a

14a

15a

16a

8b

11b

atoms are placed in rigid bodies,

fixed with respect to each other.

between the rigid bodies are

“hinges” which allow appropriate

motion

rings and other closed loops are

broken- replaced with a bond.

43

Topology Setup
torsion angle dynamics with fixed region:

from ivm import IVM
integrator = IVM() #create an IVM object
integrator.fix(AtomSel("resid 100:120")) # these atoms are fixed in space
integrator.group(AtomSel("resid 130:140")) # fix relative to each other,

but translate, rotate in space

from protocol import torsionTopology
torsionTopology(integrator, # group rigid side chain regions

oTensors=listOfVarTensors) # break proline rings
group and setup all remaining
degrees of freedom for
torsion angle dynamics
#
second argument:
topology setup - for RDC
alignment tensor atoms:
- tensor axis should rotate
only - not translate.
- only single dof of Da and Rh
parameter atoms is significant.

44

IVM Implementation details:
other coordinates also possible: e.g. mixing Cartesian, rigid body and torsion angle motions.

convenient features:

• variable-size timestep algorithm

• will also perform minimization

• facility to constrain bonds which cause loops in tree.

full example script in eginput/gb1_rdc/refine.py of the Xplor-NIH distribution.

dynamics with variable timestep
import protocol
bathTemp=2000
protocol.initDynamics(ivm=integrator, #note: keyword arguments

bathTemp=bathTemp,
finalTime=1, # use variable timestep
printInterval=10, # print info every ten steps
potList=pots)

integrator.run() #perform dynamics

45

High-Level Helper Classes
AnnealIVM: perform simulated annealing

from simulationTools import AnnealIVM
anneal= AnnealIVM(initTemp =3000, #high initial temperature

finalTemp=25, #final temperature
tempStep =25, # temperature increment
ivm=dyn, # ivm object used for molecular dynamics
rampedParams = coolParams) #list of energy parameters to scale

anneal.run() # acutally perform simulated annealing

force constants of some terms are geometrically scaled during refinement:

kNOE = γnk
(0)
NOE

γN = k
(f)
NOE/k

(0)
NOE

from simulationTools import MultRamp #multiplicatively ramped parameter
coolParams=[]
coolParams.append(MultRamp(2,30, #change NOE scale factor

"noe.setScale(VALUE)"))

46

StructureLoop: calculate multiple structures

from simulationTools import StructureLoop
StructureLoop(structureNums=range(10), # calculate 10 structures

structLoopAction=calcStructure, # calcStructure is function
pdbTemplate=pdbTemplate) # template for output structures

pdbTemplate = ’SCRIPT_STRUCTURE.sa’
#SCRIPT -> replaced with the name of the input script (e.g. ’anneal.py’)
#STRUCTURE -> replaced with the number of the current structure

StructureLoop also helps with analysis:

from simulationTools import StructureLoop, FinalParams
StructureLoop(structureNums=range(10),

structLoopAction=calcStructure,
pdbTemplate=outFilename,
averageTopFraction=0.5, # fraction of structures to use
averageFitSel="not hydro ANI", #atoms used for fitting structures
averagePotList=potList, #terms to use to compute of ave. struct
averageContext=FinalParams(rampedParams), #force constants used
averageFilename="ave.pdb", #output filename
genViolationStats=True, # generate a .stats file with

energy/violation/structure stats
).run()

StructureLoop transparently takes care of parallel structure calculation.

47

parallel computation of multiple structures
computation of multiple structures with different initial velocities and/or coordinates: gives
idea of structure precision, convergence of calculation.

xplor -parallel -machines <machine file>

on a multi-processor computer:
xplor -smp <number of CPUs>

or, on a Scyld cluster
xplor -scyld <number of CPUs>

convenient Xplor-NIH parallelization

• spawns multiple versions of xplor on multiple machines via ssh or rsh.
• structure and log files collected in the current local directory.
• robust to crashing compute nodes, crashing XPLOR runs, and the presence of dead nodes

requirements:

• ability to login to remote nodes via ssh or rsh, without password
• shared filesystem which looks the same to each node
• fully populated /bin and /usr/bin directories.

following environment variables set: XPLOR NUM PROCESSES, XPLOR PROCESS

48

Solution Scattering Intensity
types of experiments:

• small-angle X-ray scattering (SAXS)

• wide (or large) angle X-ray scattering (WAXS)

• Neutron scattering (SANS)

Provides information on overall molecular shape, size
→ complementary to NMR

example spectra:

SANS - RAP
0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

In
te

ns
ity

In
te

ns
ity

0 0.05 0.1 0.15 0.2 0.25

q (Å−1)q (Å−1)

X-ray - Dickerson dodecamer
1 · 104

2 · 104

5 · 104

In
te

ns
ity

In
te

ns
ity

0 0.5 1 1.5 2 2.5 3

q (Å−1)q (Å−1)

49

Calculating Scattering Intensity
Sum over all atoms: point-source scatterers

A(q) =
∑

j

f eff
j (q)eiq·rj ,

scattering vector amplitude: q = 4π sin(θ)/λ
θ = 0 is the forward scattering direction

effective atomic scattering amplitude: feff
j (q) = fj(q) − ρsgj(q)

fj(q): vacuum atomic scattering amplitude
ρsgj(q): contribution from excluded solvent
->neglect boundary layer contribution<-

Difference between neutron and X-ray calculation: different f eff
i (q)

Measured intensity

I(q) = 〈|A(q)|2〉Ω

〈·〉Ω: average over solid angle

Closed form solution: the Debye formula:

I(q) =
∑

i,j

f eff
i (q)f eff

j (q)sinc(qrij),

sum is over all pairs of atoms. Expensive!

50

Scattering Intensity Approximations

Instead, compute A(q) on a sphere and integrate

over solid angle numerically.

Points are selected quasi-uniformly on the sphere

using the Spiral algorithm:

Additionally, combine atoms in “globs”:

fglob(q) = [
∑

i,j

f eff
i (q)f eff

j (q)sinc(qrij)]
1/2,

Correct globbing, numerical integration errors with a multiplicative q-dependent correction
factor cglob:

I(q) = cglob(q)Iglob(q),

51

Calculated intensity for DNA scattering: numerical and globbing approximations:

5 · 103

1 · 104

2 · 104

5 · 104

In
te

ns
ity

In
te

ns
ity

0 0.5 1 1.5 2 2.5 3

q (Å−1)q (Å−1)

exact
100 points on sphere
100 points on sphere - using globs

52

Refinement against solution scattering data
Refinement target function

Escat = wscat

∑

j

ωj(I(qj) − Iobs(qj))
2,

wscat, ωj : weight factors

Typically set ωj to inverse square of error in Iobs(qj)

I(q) typically normalized to I(0).
Efficient computation of I(q) requires uniform spacing in q.

SANS:
from sansPotTools import create_SANSPot, useGlobs
sans = create_SANSPot(’sans’,"resid 1:323","sans.data",

preweighted=False,fractionD2O=1)
sans.setNumAngles(240)
sansPotTools.useGlobs(sans)
rampedParams.append(StaticRamp("sans.calcGlobCorrect()"))
rampedParams.append(MultRamp(1.,100., "sans.setScale(VALUE)"))

X-Ray:
from solnXRayPotTools import create_solnXRayPot, useGlobs
xray = create_solnXRayPot(’xray61’,"not hydro","xray.dat")
xray.setNormalizeIndex(14)

useGlobs(xray)
xray.setNumAngles(100)

#corrects I(q) to the true Debye result
rampedParams.append(StaticRamp("xray.calcGlobCorrect(’n2’)"))

53

Refinement against an ensemble
Refinement of DNA 12-mer using NOE, RDC and X-ray scattering data

four calculated structures One four-membered ensemble

54

Refinement against an ensemble

esim = EnsembleSimulation(’ensemble’,3) #creates a 3-membered ensemble

creates two extra copies of the current atom positions, velocities, etc.

Ensemble members don’t interact, except with explicit potential terms.

Energy terms:
AvePot- average over the ensemble with no intra-ensemble interactions.

from avePot import AvePot
aveBond=AvePot(XplorPot,’bond’) # ensemble averaged bond energy

aveBond’s energy is 〈EBOND〉e averaged over the ensemble.

55

Refinement against an ensemble
most NMR observables must be averaged appropriately- AvePot is not appropriate- it only
averages ensemble energies.

For example, the appropriate RDC value is 〈DAB〉e averaged over the ensemble. The resulting

energy is then E(〈DAB〉e).

Energy terms which are ensemble aware: rdcPot, csaPot, noePot, jCoupPot, solnScatPot,
distSimmPot, posRMSDPot, potList.

Additional potential terms: RAPPot, ShapePot - restrains atom positions within an ensemble -
so members don’t drift too far apart.

Example: restrain the positions of Cα atoms to be the same in all members of the ensemble.

from posRMSDPotTools import RAPPot
rap = RAPPot("ncs","name CA") # create term
rap.setScale(100.0)
rap.setPotType("square") # harmonic potential has a flat region
rap.setTol(0.3) # 1/2-width of flat region

56

Can also refine against bond-vector order parameter for ensemble of size Ne, with unit vector ui
along the appropriate bond vector in ensemble member i

S2 =
1

2N2
e

∑

ij

(3 cos(ui · uj)
2 − 1)

[can use data from e.g. relaxation experiments.]

from orderPot import OrderPot
orderPot = OrderPot("s2_nh",open("nh_s2.tbl").read())

and crystallographic temperature factor for atom j in terms of qij , it’s position in ensemble i,
and it’s ensemble-averaged value qj

Bj = 8π2/Ne

∑

i

|qij − qj |
2

from posRMSDPotTools import create_BFactorPot
bFactor = PotList("bFactor")

Ensemble Feature: ensemble calculations can be parallelized by specifying the -num_threads
option to the xplor command.

57

VMD interface

vmd-xplor screenshot

58

Use VMD-XPLOR to

• visualize molecular structures
• visualize restraint info
• manually edit structures

• publication-quality figures

command-line invocation of separate Xplor-NIH and VMD-XPLOR jobs:

% vmd-xplor -port 3359 -noxplor
% xplor -port 3359 -py

Xplor-NIH snippet to draw bonds between backbone atoms, and labels:

import vmdInter

vmd = VMDInter()
x = vmd.makeObj("x")
x.bonds(AtomSel("name ca or name c or name n"))
label = vmd.makeObj("label")
label.labels(AtomSel("name ca"))

59

Graphical Representation of ensembles

intelligently convert ensemble of structures into a probability distribution.

60

Convenience Scripts
pdb2psf - generate a psf from a PDB file. Convenient when working from the PDB database.

% pdb2psf 1gb1.pdb

creates 1gb1.psf. Please send us pdb files which fail.

seq2psf - generate a psf file from primary sequence.

% seq2psf -segname PROT -startresid 300 -protein protG.seq

creates protG.psf with segid PROT starting with residue id 300.

tang.py - collect and average protein torsion angle values.

% eginput/protG/tang.py -psf=[psf file] [pdb files] >average.info

also:
aveStruct.py - average final structures and report per-atom RMSD to the mean

pairRMSD.py - report pairwise RMSD

targetRMSD - report RMSD to a reference structure

calcTensor.py - calculate an alignment tensor and report back-calculated RDC values given one or more
structures

calcDaRh - calculate estimates of Da and rhombicity given only RDC values (no structures) - using a
maximum likelihood approach.

mleFit - fit an ensemble of structures based on similarity using a maximum likelihood algorithm

domainDecompose - given an ensemble of structures, find regions of structural similarity, using
maximum-likelihood fitting.

61

Putting it together: a full script
Full script for refining protein G from a random extended chain, using NOEs, RDCs, Jcoup
data.
http://nmr.cit.nih.gov/xplor-nih/doc/current/python/anneal.py.html

Also available in the Xplor-NIH distribution in as eginput/protG/anneal.py

62

http://nmr.cit.nih.gov/xplor-nih/doc/current/python/anneal.py.html

The PASD facility for automatic NOE assignment
developed by John Kuszewski

sometimes referred to as Marvin

main features:

• initial assignment likelihoods set by topological network of interconnected distance
restraints.

• probabilistic selection of good NOE assignments

• for a given NOE peak, multiple possible assignments are simultaneously enabled during
initial passes.

• inverse (repulsive) NOE restraints are used, consistent with the current set of active
assignments.

• soft linear NOE energy.

• successive passes of assignment calculation are not based on previously determined
structures.

• in addition to NOE data, TALOS dihedral restraints are used.

63

The PASD facility
each NOE cross-peak generates a Peak

each Peak can have zero or more

Peak Assignments

each Peak Assignment contains a from- and a to- Shift Assignment - selections of one or more
atoms (containing generally indistinguishable atoms such as stereo pairs).

distances calculated using these selections using 1/r6 summing.

64

The PASD facility

Initial Likelihoods

network analysis:

mark as likely assignments between

residues with more interconnecting

assignments.

Primary sequence filter:

when there are multiple choices,

always choose intra-residue

assignment. Long range assignments

get zero initial likelihood.

65

The PASD facility
each assignment is activated or deactivated based on combination of current distance violations
and prior likelihoods.

λi: likelihood of assignment i:
λi = (1 − w0)λvi + w0λpi

λvi - instantaneous likelihood [= exp(−∆2

i /D2

v)]

∆i - violation of assignment i

Dv - tunable parameter

λpi - prior likelihood fraction of good structures from previous

calculation pass in which assignment i is satisfied.

w0 = 0 . . . 1 - relative weight of λvi and λpi

assignment i is activated if random num between 0..1 is smaller than λi

Entire collection of assignments is accepted or rejected using a Monte Carlo criterion, based on
the NOE energy. Activation/deactivation of assignments is continued until Monte Carlo
acceptance.

66

PASD Assignment optimization protocol

pass 1:

• start with collapsed structure with random torsion angles
• Linear NOE pot used.
• Inverse NOE potential used.
• high temp 1: 4000K

– activation/deactivation carried out 10 times using only prior likelihoods.
– only Cα nonbonded repulsion is enabled.

• high temp 2: 4000K
activation/deactivation carried out 10 times using equally weighted prior and instantaneous
likelihoods (w0 = 0.5).

• cooling: 4000 → 100K
64 assignment activation/deactivation steps, with decreasing Dv

w0 reduced from 0.5 → 0.
• prior likelihoods regenerated from top 10% of structures.

pass 2:

• quadratic NOE potential used.

• high temp: 4000K

assignment, single activated assignment chosen at 10 intervals, based solely on the pass 2 prior

likelihoods.

• cooling: 4000 → 100K

assignments selected, restraints activated/deactivated 64 times w0 reduced 0.5 → 0. force constants

increased.

67

The PASD facility
final assignment: final likelihoods are computed for each assignment
incorrect restraint should have all likelihoods near 0
correct restraint should have one assignment with a likelihood near 1.

results:

• Published results for six proteins. Demonstrated successfully on proteins with over 210
residues.

• method can tolerate about 80% bad NOE data.
• failure is clearly indicated by a low value of resulting NOE coverage: the number of

long-range high-likelihood assignments obtained.

• poor structural precision may mean that the algorithm failed, or that only subregions have
been determined.

• regardless, high-likelihood assignments are very likely to be correct.

input formats supported: nmrdraw, nmrstar, pipp, xeasy.

68

Where to go for help
online:
http://nmr.cit.nih.gov/xplor-nih/ - home page
xplor-nih@nmr.cit.nih.gov - mailing list
http://nmr.cit.nih.gov/xplor-nih/faq.html - FAQ
http://nmr.cit.nih.gov/xplor-nih/doc/current/ - current Documentation,

including the XPLOR manual

subdirectories within the xplor distribution:
eginputs - newer complete example scripts
tutorial - repository of older XPLOR scripts
helplib - help files
helplib/faq - frequently asked questions

Python:
M. Lutz and D. Ascher, “Learning Python, 2nd Edition” (O’Reilly, 2004);
http://python.org

TCL:
J.K. Ousterhout “TCL and the TK Toolkit” (Addison Wesley, 1994);
http://www.tcl.tk

Please complain! and suggest!

69

http://nmr.cit.nih.gov/xplor-nih/
http://nmr.cit.nih.gov/xplor-nih/faq.html
http://nmr.cit.nih.gov/xplor-nih/doc/current/
http://python.org
http://www.tcl.tk

	intro
	Scripting Languages
	Intro to Python
	Python in Xplor-NIH
	Accessing Python
	A Script Skeleton
	Loading and Generating Coordinates
	Atom Selections in Python
	Potentials Terms in Python
	The internal variable module
	High-Level Helper Classes
	Parallel structure computation
	Solution Scattering Calculation
	Solution Scattering Refinement
	Ensemble Refinement
	VMD-XPLOR
	Convenience Scripts
	Example Script
	automatic NOE assignment with PASD
	References

