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We present a software module which allows one to efficiently
perform molecular dynamics and local minimization calculations
in internal coordinates when incorporated into a molecular dy-
namics package. We have implemented a reference interface to
the NIH version of the X-PLOR structure refinement package and
show that the module provides superior torsion angle dynamics
functionality relative to the native X-PLOR implementation. The
module has been designed in a portable fashion so that interfacing
it with other packages should be relatively easy. Other features of
the module include the ability to define rather general internal co-
ordinates, an accurate integration algorithm which can automati-
cally adjust the integration step size, and a modular design which
facilitates extending and enhancing the module.

1. INTRODUCTION

In the past ten years efficient algorithms have made compu-
tationally tractable the use of internal coordinates in molecu-
lar dynamics simulations of systems of biological interest(hav-
ing more than say 100 atoms). Internal coordinates are an at-
tractive alternative to the Cartesian coordinates of each atom
when particular degrees of freedom are not of interest. For
example, in the process of NMR structure determination and
refinement in which one seeks molecular structures consistent
with experimental NMR data, the bond lengths and bond angles
are generally taken as fixed - and no information about these
features is generally available from the NMR experiments. If
these known coordinates are removed from the local optimiza-
tions and molecular dynamics simulations, the conformational
search space becomes smaller and more rapidly sampled. For
example, typical proteins have approximatelyNa/3 torsion an-

gles compared with3Na coordinates in atomic Cartesian space,
whereNa is the number of atoms. Hence, the conformational
space is about an order of magnitude smaller if torsion angles
are used. Furthermore, in torsional angle molecular dynam-
ics (TAMD), it is typical that the timestep required to maintain
a given level of energy conservation is about ten times larger
than that required in atomic Cartesian space because the high
frequency bond bending and stretching motions have been re-
moved. Other aspects of the simulation might also be made
more efficient because bond and bond-angle forces no longer
need be calculated and because there are fewer coordinates to
update in the integrator. However these final two aspects have
not been found to make a significant contribution to dynamics
run times in practice.

An efficient recursive algorithm for dynamics in internal co-
ordinates was originally introduced in the robotics literature[1,
2, 3, 4]. This algorithm was then implemented for TAMD in X-
ray and NMR refinement packages [5, 6, 7] and in a more gen-
eral purpose molecular dynamics package[8, 9]. In the current
paper we report the implementation of a general internal vari-
able dynamics module (IVM) for efficient molecular dynam-
ics. It allows general hinge definitions including those used in
TAMD, but also allowing more general coordinates which are
appropriate when some degrees of freedom are of interest and
others are not; for instance, in the refinement problem of a two
protein complex in which the backbone coordinates of the iso-
lated protein structures are already known.

The IVM also includes local minimization routines (Powell
method conjugate gradient and steepest descent) so that these
techniques can be conveniently employed in the same coor-
dinate system. Our package employs an efficient6th order
predictor-corrector integrator, which requires one forceevalua-
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tion per timestep and allows for automatic timestep adjustment.
We have implemented loop constraints to maintain bond lengths
in ring topologies, although as yet we found the feature to beof
limited use. Finally, the code has been developed in a highly
modular fashion to make the addition of new hinge definitions,
integrators and minimizers a relatively simple task. The IVM is
not a stand-alone program as it does not have code to evaluate
forces and lacks support for file formats, etc. It is currently in-
terfaced to the NIH version of X-PLOR[10], and we intend to
integrate the IVM into other packages.

In the next section, we derive the equations of motion in in-
ternal coordinates and outline the recursive solution. In section
3 we document the details of the current implementation. In
section 4 we give two examples of using the IVM in the re-
finement of NMR structures. Finally, section 5 contains some
concluding remarks. The software can be obtained as part of
the NIH version of X-PLOR[10], or by contacting the authors.

2. FORMULATION

In Cartesian coordinates, Newton’s equations are well
known:

−∇qi
V = mi

d2qi

dt2
, (1)

whereqi is the position of theith atom, mi is its mass and
V is the total potential energy. Eq. (1) reflects the fact that
the atomic coordinates are coupled only in the potential en-
ergy term. However, in internal coordinates, Newton’s equation
reads

−∇θV = M
d2θ

dt2
+ C , (2)

whereθ describes a vector of internal coordinates;C is a vector
of Coriolis forces present because these coordinates are non-
inertial; andM is a mass matrix which is, in general, not diag-
onal and the elements of which vary as the coordinates change
in time. An equation for the mass matrix is given in Section
2.4. Naively, in solving Eq. (2), one would expect to expend
computational effort proportional to the cube of the numberof
internal coordinates, making its solution more expensive than
the evaluation of the forces, and resulting in unacceptablypoor
performance for most molecules of biological interest. How-
ever, Jainet. al. [1, 2] and Bay and Haug [3, 4] have come up
with recursive algorithms to solve Eq. 2 with effort directly pro-
portional to the number of internal coordinates if the molecule
is decomposed into a hierarchical tree structure as described be-
low. We outline this recursive algorithm in Section 2.5.

Following Ref. [1], we decompose a molecule of interest
into collections of one or more atoms which we group together
in rigid bodies referred to as clusters. Within a given cluster, the
relative positions of the atoms are specified. An arbitrary clus-
ter is then chosen as the base and covalently bonded clusters
are assigned as children. This process is repeated until allthe
clusters have been placed in the tree. A cluster tree decomposi-

tion appropriate for torsion-angle-only dynamics is depicted in
Figure 1

The clusters are connected by “hinges” which allow motion
of one cluster relative to its parent. These hinges permit those
degrees of freedom appropriate to those internal coordinates
which one wishes to allow. Hence, freely rotating and trans-
lating clusters with three or more atoms would have6 degrees
of freedom, while torsion-angle-only motion would be repre-
sented by a hinge with a single rotational degree of freedom.A
concrete example of hinge coordinates is given in Section 2.1

In order to form the tree topology, one must disregard cova-
lent bonds closing rings and loops such as those arising from
disulfide bonds. These bonding relationships can be re-asserted
using one of several methods: an appropriate bonding poten-
tial energy term can be employed, the bond can be explicitly
constrained in the dynamics, or, for small rings, the ring can be
treated as a flexible (non-rigid) cluster[11], with only desired
ring degrees of freedom active. The IVM allows for the first so-
lution, and also implements the second ring-closing technique,
as described in Sec. 2.6

In the tree structure, each cluster is identified by a pair of in-
dices. The first identifies the cluster level, and varies between1
andNt. We term the level1 cluster the base, and those clusters
at the ends of the branches the tips. The second index labels the
particular branch at a given level. This label is not needed for
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FIG. 1. The tree structure of a three-residue protein fragment decomposed
into clusters appropriate for torsion-angle dynamics. The numbers represent the
cluster level (distance from the base), while the letters denote the branch. The
red bond in the ring of the phenyl group shows where a bond must be broken
in order to impose the tree structure. However, in refinement calculations the
relative position of the atoms in the phenyl group are known and thus are usually
grouped into a single cluster.
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unbranched structures and is usually omitted in this paper for
clarity. Further notes on notation:

• Quantities with superscripts(o), (i), or (c) denote the ap-
propriate initial quantity, value in internal coordinates, or value
in Cartesian coordinates, respectively.
• R denotes a rotation matrix.
• 11 represents a unit matrix of appropriate dimension.
• SuperscriptT denotes the transpose operation.
• A tilde over a vector denotes the tensor associated with the

vector’s cross product,i.e. in matrix representation

ã =





0 −az ay

az 0 −ax

−ay ax 0



 , (3)

such that̃ab = a × b, for vectorsa andb.

2.1. Example Hinge Coordinates

As a concrete example of the coordinates used we consider
the branchless tree segment depicted in Fig 2 with the positions
of atomn in clusterk represented as

qk,n = qk−1,0 + Rk−1(q
(0)
k,0 − q

(0)
k−1,0 + q

(i)
k )

+Rk(q
(0)
k,n − q

(0)
k,0) , (4)

with the rotation matrixRk = Rk−1R
(i)
k . [Note that here the

second subscriptn denotes the atom within this cluster and not
the branch.] Hingek corresponds to the bond between atoms at
positionsqk,0 andqk−1,b. Displacements from the parent clus-
ter, such as those due to a bond stretch, are represented by the
relative internal positionq(i)

k , while internal rotations relative to
the parent cluster are represented by the rotation matrixR

(i)
k .

Consider the example case in which the only allowed degrees
of freedom between clustersk andk − 1 aresk, the displace-
ment from equilibriums

(0)
k of the bond between atoms at posi-

tionsqk,0 andqk−1,b, such that

q
(i)
k = (sk + s

(0)
k )e

(0)
k , (5)

whereek is the unit vector in the directionqk,0−qk−1,b; andτk,
the torsion angle about this bond resulting in the rotation matrix
about this bond,R(i)

k , whose time derivative is given by

Ṙ
(i)
k = τ̇ ẽ

(0)
k R

(i)
k . (6)

qk−1,0

qk−1,b

qk,0
qk,b

qk+1,b

qk+1,0

hinge k+1
cluster k

hinge k

cluster k−1
cluster k+1

FIG. 2. Hierarchical hinge/cluster decomposition. As there are no branches in
this example, only a single cluster index is used here.

Then the velocity of atomn in clusterk is

q̇k,n = q̇k−1,0 + Ṙk−1(q
(0)
k,0 − q

(0)
k−1,0 + q

(i)
k )

+Rk−1q̇
(i)
k + Ṙk(q

(0)
k,n − q

(0)
k,0)

= q̇k−1,0 + ω̃k−1 (qk,n − qk−1,0) + ekṡk

+Rk−1ẽ
(0)
k R

(i)
k (q

(0)
k,n − q

(0)
k,0)τ̇k , (7)

where we have used the relationshipdR/dt = ω̃R whereR
is rotation matrix describing a rotation relative to a fixed refer-
ence frame andω is the associated angular velocity. Likewise,
the time-dependence of the rotation matrix obeys the following
recursive relation

Ṙk = ω̃kRk

= ω̃k−1Rk + Rk−1ẽ
(0)
k R

(i)
k τ̇k . (8)

If we definevk ≡ q̇k,0, then, from Eq. (7) we have

vk = vk−1 + ω̃k−1 (qk,0 − qk−1,0) + ekṡk , (9)

and from Eq. (8) we can also write

ω̃k − ω̃k−1 = Rk−1ẽ
(0)
k R

(i)
k RT

k τ̇k

= Rk−1ẽ
(0)
k RT

k−1τ̇k

= ẽk τ̇k , (10)

rewritten as

ω̃k = ω̃k−1 + ẽk τ̇k. (11)

Eqs. (9) and (11) allow one to determine the linear and angular
velocities of clusterk recursively from the internal velocitieṡs
and τ̇ and from its parent’s linear and angular velocities. The
general recursive equations for angular and linear velocities are
given in the next section.

2.2. General recursive expression for spatial velocity

The spatial velocity of clusterk is defined [12] as the block
vector

Vk =

(

ωk

vk

)

. (12)

Eqs. (9) and (11) can be generalized in the following recursive
expression for the spatial velocity of thekth cluster

Vk =

(

ωk

vk

)

= φT
k,k−1Vk−1 + HT

k θ̇k . (13)

Here

φk,k−1 =

(

11 q̃k − q̃k−1

0 11

)

,

Hk =

(

h
(a)
k 0

0 h
(t)
k

)

. (14)
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whereh
(a)
k andh

(t)
k are matrices, the columns of which respec-

tively denote the angular and translational degrees of internal
freedom of hingek. These directions should be normalized,
such thatHT

k Hk = 11. Typically, the base cluster (k = 1) will
be allowed all degrees of rotational and translational freedom
(H = 11). The vectorθk contains all of the allowed internal
degrees of freedom of hingek.

In practice, the coordinates used for integration can be dif-
ferent from those in which the angular velocity is expressed.
For instance, it is convenient to use the four Euler parameters
(quaternion representation) to describe the orientation of a rigid
body, while only three angular velocities are expressed in the
equations of motion. For simplicity, we ignore this subtlety in
our current notation.

Time-differentiation of Eq. (13) leads to the following recur-
sive equation for the spatial acceleration:

αk ≡ V̇k = φ̇T
k,k−1Vk−1 + φT

k,k−1αk−1 + ḢT
k θ̇k + HT

k θ̈k

= φT
k,k−1αk−1 + HT

k θ̈k + ak , (15)

whereak is thekth cluster’s Coriolis acceleration

ak =

(

0
ω̃k(vk − vk−1)

)

+

(

ω̃k 0
0 ω̃k

)

HT
k θ̇k . (16)

2.3. Forces and the Equations of Motion

The force on atomn in clusterk is

f
(c)
k,n = −∇qk,n

V, (17)

whereV is the total potential energy. Recall that, within a clus-
ter, atomic velocities are given by

q̇k,n = vk + ω̃k(qk,n − qk,0) . (18)

Time differentiation gives the rigid-body atomic accelerations
which are substituted into Newton’s equation of motion for
clusterk to give the equations of motion:

f
(c)
k ≡

∑

n

f
(c)
k,n =

∑

n

mk,nq̈k,n

= mkv̇k + mkω̃kω̃k(qk,c − qk,0) , (19)

whereqk,c is the position of the cluster’s center of mass and
mk is the cluster mass. The moment about pointqk,0 is denoted
N

(c)
k ,

N
(c)
k ≡

∑

n

(q̃k,n − q̃k,0)f
(c)
k,n . (20)

Again replacing the forces usingf (c)
k,n = mk,nq̈k,n, and using

accelerations appropriate for a rigid body yields the following
equation for moment in terms of rigid body velocities and ac-
celerations:

N
(c)
k = mk(q̃k,c − q̃k,0)v̇ + Ikω̇k + ω̃kIkωk , (21)

whereIk is the inertia tensor aboutqk,0:

Ik =
∑

n

mk,n[|qk,n − qk,0|
211 (22)

−(qk,n − qk,0)(qk,n − qk,0)
T ] .

Thus, the spatial equations of motion in the absence of hinges
can then be written as

F
(c)
k = Mkαk + bk , (23)

where

F
(c)
k =

(

N
(c)
k

f
(c)
k

)

(24)

bk =

(

ω̃kIkωk

mkω̃kω̃k(qk,c − qk,0)

)

(25)

Mk =

(

Ik mk(q̃k,c − q̃k,0)
−mk(q̃k,c − q̃k,0) mk11

)

. (26)

Eq. (23) is a form of the Newton-Euler Equation [12].
Now, a hinge couples adjacent clusters by means of equal

and opposite force on the two clusters. At the position ofqk,0

we write the spatial force which parent clusterk − 1 exerts on
clusterk asFk, and the spatial force from daughter clusterk+1
as−φk+1,kFk+1. If a cluster has more than one daughter, the
force is the sum of such terms.

We can then write the total force on clusterk as the sum of
hinge forces and external forces, and thus the spatial equation
of motion for clusterk within a tree is written as

Fk − φk+1,kFk+1 + F
(c)
k = Mkαk + bk . (27)

Now, the atom-based forces can be expressed in terms of in-
ternal coordinates as

T
(c)
k = −∇θk

V
(c)

= Hk

∑

k′

φk,k′F
(c)
k′ , (28)

where

φk,k′ =







φk′+1,k′ . . . φk,k−1 k > k′

11 k = k′

0 k < k′

. (29)

Eq. (28) is obtained from the definitions of the internal coor-
dinates and the definition ofF (c)

k . But we can write the poten-
tial energy as a sum of terms expressed in internal and atomic
Cartesian coordinates,V

(i) andV
(c), respectively:

V = V
(i)(θ1, . . . , θNt

) + V
(c) . (30)

Fk can be decomposed into a component acting in the con-
strained degrees of freedom to enforce constraints, and a com-
ponent in the allowed degrees of freedom arising from energy
terms which depend explicitly on the appropriate internal coor-
dinate. This later force component is projected out as

T
(i)
k ≡ HkFk . (31)
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It is seen that the projection of the hinge force in the allowed
degrees of freedom is precisely the force in those degrees of
freedom due to potential terms which explicitly depend on these
coordinates:

T
(i)
k = −∇θk

V
(i) . (32)

Thus, we have the option of expressing individual potential(and
force) function terms in either internal or atomic coordinates,
whichever are most convenient.

Finally, Eq. (27) can be regarded as a recursion relation that
is complimentary to that for acceleration:

Fk = φk+1,kFk+1 − F
(c)
k + Mkαk + bk , (33)

where here one determines the hinge forces starting from the
tip and working toward the base.

2.4. Spatial Operator Notation and the Internal
Coordinate Mass Matrix

If clusterk = 0 is chosen to be at rest, Eq. (13) yields

V0 = 0

V1 = HT
1 θ̇1

V2 = φT
21V1 + HT

2 θ̇2

= φT
21H

T
1 θ̇1 + HT

2 θ̇2

V3 = φT
32V2 + HT

3 θ̇3

= φT
31H

T
1 θ̇1 + φT

32H
T
2 θ̇2 + HT

3 θ̇3 , (34)

and so on. These equations are rewritten in spatial operator
notation [1, 2] as

V ≡











V1

V2

V3

...











= φT HT θ̇ , (35)

where

φ =











11 φ21 φ31 . . .
0 11 φ32 . . .
0 0 11 . . .
...

...
...

.. .











(36)

H =











H1 0 0 . . .
0 H2 0 . . .
0 0 H3 . . .
...

...
...

.. .











(37)

θ =











θ1

θ2

θ3

...











. (38)

Likewise,

α =











α1

α2

α3

...











= φT HT θ̈ + φT a , (39)

with

a =











a1

a2

a3

...











. (40)

The representation of the Cartesian force in internal coordinates
becomes

T (c) = HφF (c) (41)

The recursion relation Eq. (33) for the hinge force is rewritten
as

F =











F1

F2

F3

...











= φ
[

Mα + b − F (c)
]

, (42)

with the block-diagonal spatial operator mass matrix defined as

M =











M1 0 0 . . .
0 M2 0 . . .
0 0 M3 . . .
...

...
...

. . .











. (43)

Finally, we use the operator counterpart of Eq. (31) combined
with Eqs. (39) and (42) to obtain the equations of motion in
internal coordinates as

HF = T (i) = Mθ̈ + C (44)

with the internal variable mass matrix and Coriolis terms de-
fined respectively as

M = HφMφT HT , (45)

and

C = Hφ
[

MφT a + b − F (c)
]

. (46)

Note thatM is a non-diagonal matrix whose elements change
with time (φ and H depend on cluster position). From this
point, one then can use the recursive algorithm described be-
low to solve forθ̈ with computational effort proportional to the
number of clusters.

For a branched molecule, the spatial equations take exactly
the same form as Eqs. (35)-(46), where now all clusters with the
same level have the same indexk. The components of the spa-
tial operator quantities themselves become block vectors and
matrices. For example, if there are two branches at thekth level,
the internal velocity vector and theφk,k−1 matrix respectively
become

Vk →

(

Vka

Vkb

)

(47)
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and

φk,k−1 →























































11 l̃ka 0 0
0 11 0 0

0 0 11 l̃kb

0 0 0 11









if clusterska andkb have
distinct parents









11 l̃ka

0 11
11 l̃kb

0 11









if clusterska andkb have a
common parent

(48)

wherelka = qka,0 − qk−1,0. Thus, the generalization of the
formulae from unbranched to branched structures is straight-
forward.

2.5. Recursive Solution of the Equations of Motion

Jainet.al. [1, 2] have formulated a recursive methodology
for solving Eq. (2) for the internal coordinate accelerations.
For completeness, we include the algorithm here. For proof of
its correctness, see Refs. [1] and [2].

Introduce the following ancillary quantities for each cluster
k:

Pk = φk+1,kP+
k+1φ

T
k+1,k + Mk (49a)

Dk = HkPkHT
k (49b)

Gk = PkHT
k D−1

k (49c)

P+
k = (11− GkHk)Pk (49d)

zk = φk+1,kz+
k+1 + Pkak + bk − F

(c)
k (49e)

ǫk = Tk − Hkzk (49f)

νk = D−1
k ǫk (49g)

z+
k = zk + Gkǫk, (49h)

where the recursion sweeps from the tip to the base with the
boundary conditions at the tip

P+
Nt

= 0, z+
Nt

= 0. (50)

Then, the updated accelerations are calculated by sweeping
from base to tip with the following recursion relations

α+
k = φT

k,k−1αk−1 (51a)

θ̈k = νk − GT
k α+

k (51b)

αk = α+
k + HT

k θ̈k + ak, (51c)

with α+
0 = 0.

Calculation of the equations of motion entails three sweeps
over each molecule. In the first sweep from base to tip Eq. (13)
is used to compute spatial velocities. Second is a sweep from
tip to base in which the quantities in Eq. (49) are computed.
Finally, accelerations are computed using Eqs. (51). The most
computationally expensive step is the second sweep due to the
computation of matrix quantities. Typically, Eq. (49a) is the
cycle-limiting step resulting in compute time scaling linearly
with the number of atom clusters.

2.6. Loop Constraints

Loop topologies such as those caused by disulfide bonds in
proteins and by sugar rings in nucleic acids are broken in the
tree decomposition of the molecules atoms into rigid clusters.
One approach to reimpose the broken bonds is to apply cor-
rection forces such that the cluster accelerations are consistent
with the bond constraints.

To address the problem of applying bond-length constraints,
we consider the situation of two independent trees with the con-
straint of a single bond between them. This artificial system
contains no loop topologies, but allows a simple formulation of
the bond-constraint problem and is sufficiently general forthe
current discussion.

Following Ref. [13], we write the constraint the bond con-
straintC as

C : |q1t − q2t| − c = 0 , (52)

whereq1t andq2t are the positions of atoms in two tip clusters
in trees1 and2, respectively, andc is the associated nominal
bond length. Differentiating constraintC twice with respect to
time results in the following relation between atomic positions,
velocities and accelerations:

(q̈1t − q̈2t) · (q1t − q2t) + |q̇1t − q̇2t|
2 = 0 . (53)

We enforce the constraint by means of an equal and opposite
force between the two atoms

f1t = −f2t = λ(q1t − q2t) , (54)

whereλ remains to be determined. For simplicity, we consider
the case of two independent trees, of which one contains the tip
atom at positionq1t and the other contains an atom at position
q2t. The internal coordinates of the two trees are described by
θ1 andθ2, respectively. In analogy to Eq. (41), the force on the
tip atoms can be represented in internal coordinates as

−JT
1 f1t , JT

2 f2t , (55)

respectively, where

JT
1 = H1φ1B1 , (56)

andB1 projects out the Cartesian velocity of the constraint atom
on tip1, i.e.

v1t = BT
1 V1 = J1θ̇1 . (57)

Then the equations of motion for the chains become

M1θ̈1 + C1 = T
(i)
1 − JT

1 λ(q1t − q2t) (58a)

M2θ̈2 + C2 = T
(i)
2 + JT

2 λ(q1t − q2t) . (58b)

The internal coordinate acceleration of each chain is broken
into two parts

θ̈1 = θ̈1f + ∆θ̈1 , (59)
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whereθ̈1f is the acceleration in the absence of the constraint,

θ̈1f = M−1
1 (T

(i)
1 − C1) , (60)

and∆θ̈1 is the correction so thatC is obeyed:

∆θ̈1 = −M−1
1 JT

1 λ(q1t − q2t) (61)

Likewise, the atomic accelerations become

q̈1t = q̈1tf + ∆q̈1t , (62)

with

∆q̈1t = J1∆θ̈1. (63)

Therefore,

q̈1t = q̈1tf + J1∆θ̈1 (64a)

= q̈1tf − J1M
−1
1 JT

1 λ(q1t − q2t) , (64b)

and

q̈2t = q̈2tf + J2M
−1
2 JT

2 λ(q1t − q2t) . (65)

Combining these expressions for tip atom accelerations with
Eq. (53) results in an equation in whichλ is the only unknown.
This equation can be solved forλ:

λ =
[

(q1t − q2t)
T (J1M

−1
1 JT

1 + J2M
−1
2 JT

2 )(q1t − q2t)
]−1

×[(q̈1tf − q̈2tf )T (q1t − q2t) + |q̇1t − q̇2t|
2] . (66)

In this equation the free accelerations have been calculated us-
ing the recursive algorithm, while the quantitiesJ1M

−1
1 JT

1 are
also calculable by a recursive algorithm [2, 13].

During integration with finite timestep size, there will be
drift in the positions and velocities such that they violatethe
constraint conditionC. Thus, it is desirable to periodically
re-enforceC with an approach which minimizes the violation
of conservation of energy. Such a procedure has been imple-
mented in an efficient fashion.

Unfortunately, this procedure becomes expensive when there
are multiple constrained loop closures, as in nucleic acids:
the λl’s for each loop are coupled together and computa-
tion become dominated by the computation of the cross terms
JlM

−1JT
l′ . This problem might be alleviated to some extent

by the Lagrange multiplier approach of Ref. [14]. Yet another
approach would be to choose the coefficientsλl such that the
associated constraint equations (52) are exactly obeyed ateach
timestep, as in SHAKE [15, 16].

More serious, however, is that in TAMD, the above ap-
proach employs the incorrect coordinates for the sugar rings.
The appropriate coordinates for the rings are ring pucker
coordinates[17]. However, pucker motion involves a combina-
tion of torsion angles and bond angles, the latter not being avail-
able in TAMD. One possible solution to this problem within the
IVM is to free the bond-angles to allow them to change in con-
cert with the torsion angles in dynamics calculations.

3. IMPLEMENTATION
3.1. Integrator

Traditionally, molecular dynamics codes would use the ve-
locity Verlet algorithm [18] for reasons of computational sim-
plicity, low memory storage requirements and its efficiency
and stability. In internal coordinates, the acceleration depends
on the velocity, requiring that the velocity Verlet algorithm be
modified. This fact and the extra computational effort required
to solve the internal variable equations of motion lead one to re-
think the choice of integration algorithm. The original TAMD
implementation in X-PLOR [5, 6] utilized the Runge-Kutta al-
gorithm, but this has the distinct disadvantage of requiring three
force evaluations at each timestep. The program Dyana [7] em-
ployed a modified Verlet algorithm to account for the velocity-
dependent forces. Our code is built in a modular fashion, so that
is has been straightforward to implement a4th order Runge-
Kutta [19] and modified Verlet algorithms in addition to a6th

order predictor-corrector integrator (PC6) [20], which also re-
quires only one force evaluation per timestep.

In the 6th order predictor-corrector used here, the vector of
internal coordinates and its first five scaled time derivatives at
time t are denoted

θ(n)(t) =
∆tn

n!

dnθ(t)

dtn
, n = 0 . . . 5 (67)

If qT = (θ(0)T

, . . . , θ(5)T

), then the prediction step becomes

q(p)(t + ∆t) = Wq(t) , (68)

where

W =

















1 1 1 1 1 1
0 1 2 3 4 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

















. (69)

Using the updated positions and velocities, the scaled acceler-
ationa = ∆t2θ̈/2 is then calculated using the recursive algo-
rithm, and the state vector is then corrected:

q(t + ∆t) = q(p)(t + ∆t) + U∆a , (70)

where∆a = a − a(p) and

U =

















3/1611
251/36011

11
11/1811
1/611
1/6011

















. (71)

In our experience the PC6 integrator was found to be the
most efficient: it allowed larger timesteps than the Verlet algo-
rithm, and requires but one force evaluation per timestep. Fig-
ure 3 displays the energy error per timestep for three integration
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schemes for the torsion-angle dynamics of the 57 residue B1
domain of protein G[21]. Also shown in the figure is the result
for the TAMD routine native to X-PLOR version 3.851, which
employs a Runge-Kutta integrator. The error is defined as

δE =< (Ei− < E >)2 > / < E > , (72)

whereEi is the energy at timestepi and the angle brackets de-
note average over timesteps. In the figure, the timestep sizeof
the Runge-Kutta results was divided by4 and3 for the IVM and
native TAMD results, respectively, to reflect the fact that they
take that many force evaluations each timestep. Using the∆E
metric, one sees that the two Runge-Kutta algorithms perform
approximately equivalently and slightly better than the Verlet
algorithm. Figure 3 clearly shows the performance advantage
for the PC6 approach. The PC6 protocol requires more storage
and computation than the Verlet algorithm, but this is mitigated
by the overhead of the recursive algorithm. Example timingson
our platforms suggest that the CPU overhead of the PC6 versus
the Verlet is a few percent of runtime. This efficiency penalty
is readily offset by the factor of three or so increase in stepsize
allowed by the PC6 algorithm. However, for a given set of in-
ternal coordinates (i.e. not torsion angles), a different integrator

FIG. 3. The error in energy as a function of step size for three IVM integrators
and the TAMD routine native to X-PLOR. Note that the IVM Runge-Kutta and
native TAMD step sizes have been divided by4 and3, respectively, to reflect
the number of force evaluations at each timestep.

may be more appropriate. The Verlet and Runge-Kutta routines
are available in the IVM package, and new algorithms can be
implemented in a straightforward fashion.

3.1.1. Self-Adjusting timestep

The native integrators in the X-PLOR program require that
one specify the size of the timestep. As an alternative, one can
specify an error tolerance in the total energy and the timestep
is then appropriately adjusted to meet this tolerance. We em-
ployed the approach used in Dyana [7] in which the timestep is
scaled by thead hoc factor

√

1 +
∆E0 − ∆E

τ∆E
, (73)

where∆E0 and∆E are the target and observed energy error,
respectively, andτ is the response time in units of the molecular
dynamics timestep size. In addition, a step is thrown out andthe
step size halved if the energy error is greater than a threshold
(typically 10% of the total energy).

We implemented both fixed- and implicit-timestep ap-
proaches and found that the latter is more flexible and conve-
nient, particular when using the same simulated annealing pro-
tocol with different hinge definitions; for instance, the same
protocol may be used for torsion angle and Cartesian space
dynamics. The error tolerance is made a set fraction of the
bath temperature and then the annealing protocols can be identi-
cal, with a larger timestep automatically chosen for the torsion-
angle-only dynamics.

3.1.2. Constant Temperature Dynamics

Constant temperature dynamics is desirable for the simulated
annealing optimization used in structure refinement. We have
implemented coupling of the simulated system to a temper-
ature bath using two rudimentary approaches appropriate for
structure determination dynamics: using velocity rescaling and
using a velocity-dependent force [22]. Here we describe the
velocity-scaling approach as it is the more convenient whenus-
ing automatic timestep selection. At each step, all of the inter-
nal velocities are scaled by

√

1 +
T0 − T

τT
, (74)

whereT andT0 are the system and bath temperature, respec-
tively, andτ is the response time in units of the molecular dy-
namics timestep size.

Some care must be taken in determining the total energy
in the presence of a bath, since the timestep depends upon
it. We used the approach employed in Dyana [7] in which
temperature-coupling was achieved by velocity rescalingafter
the step was taken to evaluate the error in the system energy.

More appropriate for molecular dynamics simulations at-
tempting to reproduce a canonical ensemble would be a ther-
mostat using Nośe-Hoover chains[23, 24]. Use of the Nosé-
Hoover approach would yield more accurate dynamics and
would still allow the current automatic timestep adjustment al-
gorithm due to the fact that there is a conserved total energy.
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However, this thermostat has not yet been implemented in the
current framework.

3.1.3. Startup

The issue of dynamics initialization becomes important par-
ticularly when many short dynamics runs are required, as is usu-
ally the case in simulated annealing protocols for NMR struc-
ture determination and refinement. There are a number of tasks
that must be accomplished upon startup. These tasks are item-
ized along with the solutions we employed to achieve accept-
able performance:

• The internal coordinates must be defined. For torsion angle
dynamics, we have automated the generation of the appropriate
hinge definitions.

• The internal coordinates must be determined such that they
are consistent with a given set of Cartesian coordinates. Given a
defined tree topology, this mapping is unique and scales linearly
with the number of atoms.

• Internal velocities must be generated that are as consistent
as possible with the given atomic velocities. Because the atomic
velocities are free to display non-allowed motion within a fixed
cluster and other motion not allowed by the hinge definitions,
this mapping is not one-to-one. We pose the process as an opti-
mization problem with the following objective functional:

1

2
(V

(c)
0 − V (c))T M (c)(V

(c)
0 − V (c)) , (75)

whereV
(c)
0 is a vector of the given atomic velocities andV (c)

are the atom velocities determined from a given set of inter-
nal coordinate velocitieṡθ. We have chosen to scale the objec-
tive function by the atomic masses, represented in the diagonal
atomic mass matrixM (c).

The atomic velocities are linearly related to the internal coordi-
nate velocities by

V (c) = Jθ̇ , (76)

with

JT = HφB , (77)

and withBT the rectangular matrix which converts cluster spa-
tial velocities to atomic velocities. The internal velocities that
minimize Eq. (75) are then

θ̇ = (JT M (c)J)−1JT M (c)V
(c)
0 . (78)

Now, the effort for solving this equation scales as the cube of
the number of internal coordinates if we use a brute-force ap-
proach. Clearly, we would like to avoid this cost if possible.
Fortunately, this equation has the same form as that for the clus-
ter equations of motion, Eq. (2), with the matrix

JT M (c)J = HφBM (c)BT φT HT (79)

having the same form as the mass matrix in internal coordinates
Eq. (45), so that we can reuse the algorithm from Section 2.5 if
the following substitutions are made:

M → BM (c)BT (80a)

θ̈ → θ̇ (80b)

T → JT M (c)V
(c)
0 , (80c)

and we seta = b = f (c) = 0. This allows the velocities of the
internal coordinates to be determined with effort proportional
to the number of atom clusters.

• The integrator must be initialized. The PC6 integrator re-
quires no extra steps at initialization if one is willing to settle
for decreased accuracy during the first few steps: the initial val-
ues ofdnθ/dtn are set to zero forn = 3 . . . 5. This approx-
imation was found to be adequate in the current applications
of the IVM, but a different approach may be desirable in other
circumstances.

3.2. Local Minimization
In local minimization, the mass matrix is not involved, so that

the algorithm of Section 2.5 is not necessary. However, it was
deemed convenient to provide a local minimization facilityto
augment the integrator. For one, this approach allows for local
minimization after a dynamics run using the same coordinates.
Also, this addition removes the need for any separate rigid-body
minimization routine.

Again, the minimizer was implemented using a modular de-
sign so that multiple algorithms can be implemented with ease.
Currently, the most efficient algorithm implemented is a Powell
method derived from the same IMSL code which was used in
X-PLOR[25].

To obtain the gradient in internal coordinates,T = T (c) +
T (i) , Eq. (41) must be solved. This can be accomplished using
the following recursive formula:

zk = F
(c)
k + φk+1,kzk+1 (81a)

T
(c)
k = Hkzk , (81b)

solved from tip to base, withzk = F
(c)
k for the tip clusters.

3.3. Hinge Types Thus-far Implemented

As of this writing, hinges have been implemented which al-
low the following categories of motion:

• Rotations appropriate for rigid bodies consisting of one,
two or 3+ atoms. Euler parameters [26] are used for acceler-
ation calculations, whileXY Z Euler angles [27] are used to
calculate gradients with respect to the internal coordinates.

• Rotations plus translations appropriate for rigid bodies of
one or more atoms.

• Torsion-angle-only motion.

• Translation-only motion. Rigid body motion without rota-
tions.
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It is also simple to fix atoms in space by placing them in a fixed
inertial cluster. We note that adding new hinge definitions is a
straightforward process.

3.4. Programming Considerations

This IVM was written in the C++ programming language, an
appropriate compromise between performance and ease of de-
velopment and maintenance. Since we wish this module to be
included in multiple software packages, careful attentionwas
paid to both modularity and to performance. For example, so
that new hinge definitions would be easy to implement, run-
time polymorphism was used in the description of the cluster-
plus-parent hinge object. The HingeNode virtual base classen-
capsulates the behavior of a generic hinge-plus-cluster object,
while it is specialized for each specific type of hinge motion, be
it torsion angle, full translation, translation+rotation, etc. At-
tention was paid that virtual class methods were not used on
too fine a granularity because of performance considerations
(the calls are indirect and cannot be inlined). Another example
of the balance between performance and convenience can be
found in the two vector template classes employed in the IVM.
One class was used for arrays, whose size can vary from one
invocation to the next, such as those that contain the internal
coordinate positions and velocities, and another was used for
vectors of a size (generally small) fixed at compile time. This
latter class was deemed desirable to obviate the need for heap
storage and size information for many small vectors and it fa-
cilitates added compile-time optimization opportunity because
of the fixed loop sizes.

Despite the attention paid to coding detail here, the code
certainly suffers a runtime performance deficit relative tothe
equivalent code written in Fortran because of the relative com-
piler maturity and language-level features such as Fortran’s no-
alias guarantee. However, we are pleased with our choice of
C++ as it allows rapid development, ease of code readability
and ease of upkeep/modification. Finally, we find the current
performance quite adequate.

4. EXAMPLES OF USE FOR NMR STRUCTURE
DETERMINATION AND REFINEMENT

We are actively using the IVM presented in this paper for
refining NMR structures within the NIH X-PLOR implementa-
tion. We present two examples of use below.

4.1. Protein G: torsion angle dynamics

Here we present an example of NMR structure determination
of the B1 domain of protein G [21] to compare the IVM with the
TAMD functionality native to X-PLOR version 3.851 [5, 6] and
to demonstrate the power of the variable timestep functionality
in the IVM. In the calculation, experimental nuclear Overhauser
effect (NOE) derived interproton distance restraint termsand
dihedral restraint terms were employed in addition to potential

terms used to enforce reasonable covalent geometry and atom-
atom separation. All atomic masses were set to 100 AMU.

The starting coordinates consisted of an extended structure,
and the annealing protocol employed is summarized as follows:

• Initial all-atom Cartesian coordinate Powell minimization
using only bond, angle and improper energy terms.
• High temperature torsional angle dynamics at 2000 K for

1000 steps with all potential terms included except atom-atom
repulsion.
• A dynamics loop in which atom-atom repulsion is added

in 10 increments of 100 steps each.
• A cooling loop in which the temperature is reduced from

2000 K to 100 K in increments of 25 K - with 39 dynamics
steps taken at each temperature.
• Final all-atom Powell minimization

All dynamics calculations were performed with a timestep of
10 fs in the internal variable coordinate space consisting of 321
torsion angles, with all aromatic rings grouped into rigid clus-
ters. Coupling to a temperature bath was achieved by means of
the velocity dependent force method. Numerical results were
obtained from an executable generated by SGI Irix compilersat
full optimization.

As mentioned previously, the native TAMD procedure em-
ploys a Runge-Kutta integration scheme which requires three
force evaluations per timestep, while the PC6 algorithm re-
quires but one force evaluation per timestep. The resultingrun
time of the IVM-based protocol was approximately half that of
the native TAMD routine, which is somewhat larger than that
expected purely on the number of force evaluations. We be-
lieve that the extra overhead is due to the greater generality of
the IVM, and its use of C++ as opposed to the Fortran in which
the native TAMD routine was written.

We then made the following change to the protocol: we re-
placed the fixed length timesteps in the dynamics calculations
with timesteps that varied in the fashion described in Section
3.1.1. The scale factor of Eq. (73) for the timestep was chosen
using the target energy error∆E0 set to0.001 kcal/K times the
bath temperature, and the system-bath coupling was changedto
the velocity scaling method. The number of timesteps was al-
lowed to vary in order to complete fixed-length-in-time dynam-
ics runs: 3 ps for the high-temperature equilibration, 0.3 ps for
each of the 10 dynamics simulations in the atom-atom repulsion
loop and0.78 ps for each temperature value in the cooling loop.
These values for the total integration times in the variable-time
protocol were chosen so that the first two dynamics components
had the same values as for the fixed-time protocols, while the
integration time of each dynamics run within the cooling loop
was twice that of the fixed-time protocols.

In Figure 4 the refinement energy and root-mean-square de-
viation (RMSD) from the lowest energy structure are shown for
ten structures calculated by each of the three refinement proto-
cols. The fixed-timestep PC6 method resulted in one structure
with high energy and an RMSD value larger than 4Å. Hence,
this structure is not visible in the figure. One can see that the
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fixed timestep IVM protocol produces fewer good structures
than does the native TAMD routine, with the former producing
only two structures in the cluster of low energy and low RMSD
structures. This is as we would expect due to the fact that for
equal step size, the Runge-Kutta algorithm has better accuracy
than the predictor-corrector algorithm.

On the other hand Figure 4 shows the variable timestep pro-
tocol obtains results of quality equal to the TAMD protocol.
Moreover, the run time for the variable timestep protocol is
about half that that of the fixed timestep IVM protocol, and
it is four times faster than the TAMD protocol. This reduction
in runtime is manifest even though the total time of integration
was significantly larger (about80ps for the variable timestep
protocol versus approximately50ps for the fixed timestep pro-
tocols). This integration time was adjusted to give resultsequiv-
alent to those of the TAMD protocol. Significantly better results
were obtained when a longer integration time was used. For in-
stance, if the total integration time is appropriately doubled (re-
sulting in a run time approximately that of the fixed-time IVM
protocol), we found that all ten structures converged.

The integration step size∆t and system temperature for one
of the PC6 structures are shown as a function of step number
in Figure 5. Downward spikes in∆t occur at the beginnings
of dynamics simulations when potential parameters have been
changed discontinuously and also when there are atom-atom
collisions. At these steps the integrator detects a large error
in energy conservation and halves the step size. Note that de-
spite this fact,∆t stays relatively constant as the temperature

FIG. 4. Refinement Energy vs. RMS deviation from the minimum energy
structure for refinement with using three integration methods: the native TAMD
integrator, the PC6 integrator with fixed step size and the PC6 integrator with
the variable timestep feature enabled. The fixed-timestep PC6methods resulted
in one structure with high energy and RMSD values larger than4 Å.

FIG. 5. Timestep size and system temperature during a structure determination
run of Protein G. The three regions of the dynamics protocol are identified
as a) high temperature equilibration, b) addition of the atom-atom repulsion
potential, and c) the cooling loop.

decreases due to the fact that∆E0, the energy-conservation tol-
erance, decreases as the temperature is lowered.

Note that when using a fixed step size it is appropriate to tune
the step size for each protocol. It is thus clear that the auto-
adjusting timestep feature provides much in the way of con-
venience. In fact, the exact same (variable step size) protocol
could be used in all-degrees-of-freedom dynamics; the correct
step size would be chosen by the IVM.

4.2. Two protein complex

Here we present an example of using the IVM module to de-
termine the structure of the complex of enzyme IIAGlc with the
histidine phosphocarrier protein HPr, the crystal structures of
which are reported in Refs. [28] and [29], respectively. For
this example, we reexamine the protocol used in Refs. [30] and
[31] for determining the structure of the complex from NMR
data given the x-ray structures of the two proteins in isolation.
Experimental NMR NOE-derived interproton distance, dipolar
coupling, and J-coupling restraints were used, as in Ref. [30].
In addition to terms corresponding to these data, the refinement
energy included bond, angle, improper, dihedral, atom-atom re-
pulsion, radius of gyration [32] and knowledge-based dihedral
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[33] potential terms. The x-ray structures at various separations
and orientations were used as starting structures.

In the original protocol, two copies each of HPr and IIAGlc

were utilized in the dynamics calculations, with the extra copies
kept fixed in space. In the primary set of coordinates, all atoms
not belonging to a sidechain at the interface between the two
proteins are bound to their corresponding copies using the X-
PLOR non-crystallographic symmetry (NCS) potential. We re-
fer to this original protocol as NCS.

We implemented a new protocol in which all dynamics and
minimizations were carried out within the IVM. In the IVM
protocol the interfacial sidechain atoms were allowed their tor-
sion degrees of freedom during the dynamics calculations. The
remaining atoms in IIA were fixed in space, while the non-

(a)

(b)

FIG. 6. Hierarchical Refinement of the HPr / IIAGlc complex. Flexible interfa-
cial side chains and backbone atoms are displayed. Panel (a) depicts a starting
point configuration while panel (b) shows the final structure. In the figure, the
backbone atoms are represented by grey tubes. The flexible regions of HPr and
IIA Glc are represented by blue and red lines, respectively. This figure was cre-
ated with the VMD-XPLOR visualization program [35, 36].

interfacial atoms in HPR were allowed to rotate and translate
as a rigid body.

In both cases, the protocol is summarized as follows:

• Rigid-body minimization, with atom-atom repulsion
slowly added.

• High temperature equilibration dynamics at 3000 K (3000
steps with the NCS protocol and 10 ps, approximately 600 steps
with the IVM).

• A molecular dynamics simulated annealing cooling loop
in which the force constants and atom-atom repulsion radii are
increased. The NCS protocol utilized 103 steps of2 fs at each
temperature, while at each step, the IVM used a time duration
of 350 fs resulting in approximately 20 integration steps.

• All-atom minimization for the NCS protocol, and rigid
body plus flexible sidechain torsion minimization using the
IVM.

• Rigid body minimizations first with the atom-atom repul-
sion and radius of gyration terms turned off and then with those
terms turned back on again.

All atomic masses were set to 100 AMU. Four additional
pseudo-atoms were used to define the dipolar-coupling frame
of reference[34]. Both protocols treated these as a rigid body
restricted to rotation motion only. Before and after depictions
of IIA Glc and HPr are shown in Figure 6

With the above two protocols on the SGI Irix platform, the
IVM performed the calculations about 5 times faster than the
NCS protocol. For reference, the IVM protocol was modi-
fied to allow all internal degrees of freedom for the interfacial
sidechain atoms during the dynamics portion of refinement and
the resulting time was approximately the same as that using the
NCS protocol.

All of the resulting structures from both protocols agreed to
within 0.5 Å RMS deviation of all non-hydrogen atoms. The
NCS structures had somewhat lower refinement energies: this
was apparently due to the fact that there was some distortionof
the covalent geometry in the non-interfacial portion of thepro-
teins; this distortion was not possible in the IVM protocol,as
those portions were rigid. In particular, the dipolar coupling en-
ergy term is rather sensitive to tiny changes in bond orientation.
Further, there is no experimental justification for distorting the
covalent geometry. The bottom line is that the differences be-
tween structures calculated with different initial velocities using
the same protocol were the same size as differences between
structures calculated using the other protocol.

This example indicates two strengths of the IVM. It allows
us to simply consider just those degrees of freedom which are
probed in the experiment. As a result of this feature we were
able to obtain results equivalent to those obtained by a much
more complicated and costly procedure. Secondly, the IVM
provides convenience in that all minimizations and dynamics
simulations can be carried out within the same framework.

5. CONCLUSION
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In this paper we have presented the internal variable mod-
ule (IVM) for molecular dynamics and minimization calcula-
tions in internal coordinates. The IVM has been shown to be
an efficient full-featured implementation of the recursivetree-
decomposition acceleration evaluation algorithm which allows
loop topologies to be treated correctly. Furthermore, the exten-
sible, modular design allows new features to be easily incorpo-
rated. The IVM is currently actively used by our group in the
determination of protein and nucleic acid structures by NMR.

It should be noted that that constraining arbitrary internal
coordinates can result in unphysical dynamical behavior. For
example, it has been shown that constraining bond angle mo-
tion raises the effective barrier for torsion motion [37]. In
simulated annealing molecular dynamics calculations usedin
structure determination, such barriers are mitigated by strong
experiment-based potential energy terms and by employing
a suitably high initial temperature in the annealing protocol.
Moreover, the detailed dynamical trajectory is of no inter-
est. However, when performing molecular dynamics in non-
structure determination contexts, the implications of freezing
degrees of freedom must be given careful consideration.

Possible future enhancements include the addition of one
or more Monte Carlo minimization algorithms, adding a more
modern local minimization methodology, such as TNPACK
[38, 39], and better treatment of loop constraints. Finally, most
of the algorithms which the IVM employs are amenable to ef-
ficient parallelization. For NMR structure determination and
refinement parallelization efforts are usually better focused on
processing multiple structures simultaneously. However,other
applications have different parallelization specifications, which
could benefit from a parallelized version of this IVM.
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