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outline
1. description, history, installation

2. Scripting Languages: XPLOR, Python, TCL

∙ Introduction to Python

3. Overview of an Xplor-NIH Python script

4. Potential terms available from Python

5. IVM: dynamics and minimization in internal coordinates

6. Parallel determination of multiple structures

7. Water Refinement

8. VMD molecular graphics interface

9. Refinement against solution scattering data.

10. Ensemble refinement for a dynamical representation.

11. The PASD facility for automatic NOE assignment

goal of this document:
Xplor-NIH’s Python interface will be introduced, described in enough detail such that
scripts can be understood, and modified.
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Overview of structure determination

Minimize energy: 𝑉tot = 𝑉expt + 𝑉covalent + 𝑉knowledge + . . .

∙ molecular dynamics to explore the
energy surface.

∙ slowly decrease the temperature to find
the global minimum.

∙ surface smoothed at high temperature
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What is Xplor-NIH?
Biomolecular structure determination/manipulation

∙ Determine structure using minimization protocols based on molecular dynamics/
simulated annealing, and other algorithms.

∙ Potential energy terms:

– terms based on input from NMR (and other) experiments: NOE, dipolar coupling,
chemical shift data, SAXS, SANS, fiber diffraction, etc.

– other potential terms enforce reasonable covalent geometry (bonds and angles),
and to prevent atomic overlap.

– knowledge-based potential terms incorporate info from structure database -
packing, torsion angles, etc.

∙ includes: program, topology, covalent parameters , potential energy parameters,
databases for knowledge-based potentials, helper programs, example scripts, and high
level protocols for structure helper scripts/programs determination and analysis.

∙ freely available for non-commercial work. Source code is available.

∙ For commercial use, please contact mailto:Charles@Schwieters.org.
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Xplor-NIH Description

New contributions, additions are encouraged.
Source code of Xplor-NIH:

∙ original XPLOR Fortran source, with contributions from many groups.

∙ current work uses C++ for compute-intensive work.

∙ scripts and much code are written in Python, TCL scripting languages.

∙ SWIG used to “glue” scripting languages to C++.

∙ bazaar (bzr) repository of source code is available online.
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Installation
1. download two files from http://nmr.cit.nih.gov/xplor-nih/

a) a -db file: e.g. xplor-nih-2.42-db.tar.gz

b) a platform-specific file: e.g. xplor-nih-2.42-Linux_x86_64.tar.gz
2. unpack these files where you wish them to live:

zcat xplor-nih-2.42-db.tar.gz | (cd /opt ; tar xf -)
zcat xplor-nih-2.42-Linux_x86_64.tar.gz | (cd /opt ; tar xf -)

3. perform initial configuration:

cd /opt/xplor-nih-2.42
./configure -symlinks /usr/local/bin

The optional -symlinks argument creates symbolic links in the specified directory for
xplor and other commands. It is intended that you specify a directory in your PATH.
For instance, if installing in your home directory, you might specify -symlinks ~/bin.

4. test the new installation:

bin/testDist
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Scripting Languages- three choices
scripting language:

∙ flexible interpreted language

∙ used to input filenames, parameters, protocols

∙ flexible enough to program non compute-intensive logic

∙ relatively user-friendly

XPLOR language:
strong point:

atom selection language quite powerful.
weaknesses:

String, Math support problematic.
no support for subroutines: difficult to encapsulate functionality.
Parser is hand-coded in Fortran: difficult to update.

XPLOR reference manual:

http://nmr.cit.nih.gov/xplor-nih/doc/current/xplor/

NOTE: all old XPLOR 3.851 scripts should run unmodified with Xplor-NIH.
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Language Examples - printing 1..10
XPLOR Python 2 TCL

eval ($i=1)
while ($i le 10) loop ploop

display $i
eval ($i=$i+1)

end loop ploop

for i in range(1,11):
print i

for {set i 1}
{$i<11}
{incr i} {

puts $i
}
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General purpose scripting languages: Python and TCL
∙ excellent string support.

∙ languages have functions and modules: can be used to better encapsulate protocols (
e.g. call a function to perform simulated annealing. )

∙ well known: these languages are useful for other computing needs: replacements for
AWK, shell scripting, etc.

∙ contain extensive libraries with additional functionality (e.g. file processing, web
access, GUI library, etc).

∙ Facilitate interaction, tighter coupling with other tools.

– NMRWish has a TCL interface.
– pyMol has a Python interface.
– VMD has TCL and Python interfaces.
– Allow tight integration with CING structure validation suite (currently being

implemented).

separate processing of input files (assignment tables) is unnecessary: can all be done using
Xplor-NIH.
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Introduction to Python
assignment and strings
a = ’a string’ # <- pound char introduces a comment
a = "a string" # ’ and " chars have same functionality

multiline strings - use three ’ or " characters
a = ’’’a multiline
string’’’

C-style string formatting - uses the % operator
s = "a float: %5.2f an integer: %d" % (3.14159, 42)
print s

a float: 3.14 an integer: 42
raw strings - special characters are not translated
a = r’strange characters: \%~!’ # introduced by an r

lists and tuples
l = [1,2,3] #create a list
a = l[1] #indexed from 0 (a = 2)
l[2] = 42 # l is now [1,2,42]
t = (1,2,3) #create a tuple (read-only list)
a = t[1] # a = 2
t[2] = 42 # ERROR!
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Introduction to Python
calling functions
bigger = max(4,5) # max is a built-in function

defining functions - leading whitespace scoping
def sum(item1,item2,item3=0):

"return the sum of the arguments" # comment string
retVal = item1+item2+item3 # note indentation
return retVal

print sum(42,1) #un-indented line: not in function

43
using keyword arguments - specify arguments using the argument name
print sum(item3=2,item1=37,item2=3) # argument order is not important

42
loops - the for statement
for cnt in range(0,3): # loop over the list [0,1,2]

cnt += 10
print cnt

10
11
12
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Introduction to Python
Python is modular

most functions live in separate namespaces called modules

Loading modules - the import statement
import sys #import module sys
sys.version #return the Python version from the module sys

’2.7.5 (default, Aug 12 2013, 14:03:27) \n[GCC 4.0.2 20051125 (Red Hat
4.0.2-8)]’

or:
from sys import version #import version variable into current scope
version #don’t need to prepend sys.

’2.7.5 (default, Aug 12 2013, 14:03:27) \n[GCC 4.0.2 20051125 (Red Hat
4.0.2-8)]’
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Introduction to Python
In Python objects are everywhere.

Objects: associated functions called methods
file = open("filename") #open is built-in function returning an object
contents = file.read() #read is a method of this object

# returns a string containing file contents

dir(file) # list all methods of object file

[’__class__’, ’__delattr__’, ’__doc__’, ’__getattribute__’,
’__hash__’, ’__init__’, ’__iter__’, ’__new__’, ’__reduce__’,
’__repr__’, ’__setattr__’, ’__str__’, ’close’, ’closed’, ’fileno’,
’flush’, ’isatty’, ’mode’, ’name’, ’read’, ’readinto’, ’readline’,
’readlines’, ’seek’, ’softspace’, ’tell’, ’truncate’, ’write’,
’writelines’, ’xreadlines’]
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Introduction to Python
A mapping type: Dictionaries
d={}
d[’any’] = 4 #elements indexed like arrays
d[’string’] = 5 # but the index can be (almost) any type
print d[’string’]

5
d.keys() #return list of all index keys
d.values() #return list of all indexed values

Tools for List Processing:

List Comprehensions - convert a list to another list
stringList=[’1’,’2’,’3’]
[ int(i) for i in stringList ] # convert list of string to ints

[1, 2, 3]

List comprehension:

∙ expression within square brackets containing for, in and optionally if

[ 2*int(c) for c in [’3’,’2’,’1’] if c!=’2’ ]

[6, 2]
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Introduction to Python
interactive help functionality: dir() is your friend!
import sys
dir(sys) #lists names in module sys
dir() # list names in current (global) namespace
dir(1) # list of methods of an integer object

the help function
import ivm
help( ivm ) #help on the ivm module
help(open) # help about the built-in function open
help(sys.exit) # help about the exit function in the imported sys module

browse the Xplor-NIH python library using your web-browser on your local workstation:

% xplor -py -pydoc -g

Xplor-NIH Python module reference:
http://nmr.cit.nih.gov/xplor-nih/doc/current/python/ref/index.html

16

http://nmr.cit.nih.gov/xplor-nih/doc/current/python/ref/index.html


Linear Algebra Facilities in Python
Direct access to efficient C++ routines for matrix/vector manipulation. Includes
Numerical Python-like operations.

from cdsMatrix import RMat, transpose, inverse
from cdsMatrix import svd, trace, det, eigen

m=RMat([[1,2], #create a matrix object
[3,4]])

print m

print m[0,1] #element access
m[0,1]=3.14 #element assignment

print trace(m) #matrix trace
print det(m) #determinant
print transpose(m)#matrix transpose

print inverse(m) #matrix inverse

print 0.5*m # multiplication by scalar
print m+m,m-m # matrix addition, subtraction
print m*m # matrix multiplication

from cdsVector import CDSVector_double as vector
from cdsVector import norm

v=vector([1,2]) # vectors
print norm(v) # vector norm
print 2*v,v+v,v-v # vector arithmetic
print m*v # matrix multiplication

# 3-dimensional vectors
from vec3 import Vec3, cross, dot, unitVec
v = Vec3(1,2,3)
cross(Vec3(1,0,0),v) ; dot(Vec3(1,0,0),v)
unitVec(v)

# singular value decomposition
r= svd(m)
print r.u, r.vT, r.sigma

# eigenvalue decomposition
e= eigen(m)
print e[0].value() #first eigenvalue
print list(e[0].vector()) #first eigenvector
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Additional Mathematical Facilities
These modules are distributed with Xplor-NIH.

∙ cminpack: nonlinear least squares.

∙ fft: real and complex FFTs.

∙ moremath: special functions and constants.

∙ spline: 1-, 2-, and 3- dimensional cubic splines.

∙ numpy: Numeric Python library is distributed with Xplor-NIH.

∙ matplotlib: powerful plotting package.
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Accessing Xplor-NIH’s Python interpreter
from the command-line: use the -py flag:

% xplor -py
XPLOR-NIH version 2.42

C.D. Schwieters, J.J. Kuszewski, Progr. NMR Spectr. 48, 47-62 (2006).
N. Tjandra, and G.M. Clore J. Magn. Res., 160, 66-74 (2003).
http://nmr.cit.nih.gov/xplor-nih based on X-PLOR 3.851 by A.T. Brunger

python>

or, the pyXplor executable - a bit quieter- and can be used as a complete replacement for
the python command:
% pyXplor
python>

To run a script:
% xplor -py script.py
or, as an extension to an external Python interpreter:
% ( eval ‘xplor -csh-env‘ ; python)

or
% xplor -sh -c python
Python 2.7.10 ...
>>> import xplorNIH
>>> execfile(’script.py’)

[extension use requires that Python version be consistent between the external interpreter and
Xplor-NIH.]
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using Python from XPLOR
accessing Python from XPLOR: PYTHon command
% xplor

XPLOR-NIH version 2.42
C.D. Schwieters, J.J. Kuszewski, Progr. NMR Spectr. 48, 47-62 (2006).
N. Tjandra, and G.M. Clore J. Magn. Res., 160, 66-74 (2003).
http://nmr.cit.nih.gov/xplor-nih based on X-PLOR 3.851 by A.T. Brunger
User: schwitrs on: khaki (x86/Linux ) at: 7-Dec-06 12:37:40

X-PLOR>python !NOTE: can’t be used inside an XPLOR loop!
python> print ’hello world!’
hello world!
python> python_end()
X-PLOR>

for a single line: CPYThon command
X-PLOR>cpython "print ’hello world!’" !can be used in a loop
hello world!
X-PLOR>
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using XPLOR, TCL from Python
to call the XPLOR interpreter from Python
xplor.command(’’’struct @1gb1.psf end

coor @1gb1.pdb’’’)

xplor is a built-in module - no need to import it for simple scripts.

to call the TCL interpreter from Python
from tclInterp import TCLInterp #import function
tcl = TCLInterp() #create TCLInterp object
tcl.command(’xplorSim setRandomSeed 778’) #initialize random seed
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Structure Calculation Overview: Script Skeleton
import protocol
protocol.loadPDB("model.pdb") #initialize coordinates

coolParams=[] # a list which specifies potential smoothing
# set up potential terms from NMR experiments, covalent geometry,
# and knowledge-based terms

# initialize coolParams for annealing protocol for each energy term

from ivm import IVM #configure which degrees of freedom to optimize
dyn = IVM()

from simulationTools import AnnealIVM
coolLoop=AnnealIVM(dyn,...) #create simulated annealing object, specify temperature schedule

def calcOneStructure( structData ):
""" a function to calculate a single structure """
# [ randomize velocities ]
# [ perform high temp dynamics ]
dyn.run()
# [ cooling loop ]
coolLoop.run()
# [ final minimization ]
dyn.run()

from simulationTools import StructureLoop
StructureLoop(numStructures=100, #calculate 100 structures

structLoopAction=calcOneStructure, #using this function
doWriteStructures=True, #then write to pdb file
pdbTemplate=’SCRIPT_STRUCTURE.sa’ #using this template

).run() # a .viols file also written

StructureLoop handles parallel structure calculation, and optional structural statistics calculation and regularized
mean structure calculation.
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Loading and Generating Coordinates
PSF file - contains atomic connectivity, mass and covalent geometry information.
This information must be present before coordinates can be loaded.
generate via external helper scripts

1. seq2psf - generate a psf file from primary sequence
% seq2psf file.seq

2. pdb2psf - generate a psf file from a pdb file
% pdb2psf file.pdb

3. More involved: most modified and nonstandard residues and small molecules.

within the Python scripting interface (in the protocol module)
∙ protocol.initStruct - load pregenerated .psf file. Not necessary for standard

residues.
∙ protocol.initCoords - read pdb file using the current PSF. It also reads mmCIF

files.
∙ protocol.loadPDB - read pdb or mmCIF and generate psf info on the fly. Also

fixes-up input coordinates (naming, symmetric sidechains, disulfide bonds, BIOMT
records). It can also delete atoms whose coordinates are not known.

To write out a PDB file use protocol.writePDB("file.pdb").
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Loading and Generating Coordinates - details
A Simulation object contains atom name, position, mass, etc and bonding information.
The default Simulation is xplor.simulation
A completely separate PSF can be loaded by creating a new XplorSimulation:
from xplorSimulation import XplorSimulation
new_xsim = XplorSimulation()
import protocol
protocol.initStruct(’other.psf’,simulation=new_xsim)

Each XplorSimulation has a separate XPLOR process associated with it.

Initial atomic coordinate values: (x,y,z) = (9999.999, 9999.999, 9999.999) these are
the values if coordinates are not initialized.
To delete these atoms:
xplor.simulation.deleteAtoms("not known")

To add atomic coordinates if some are not defined:
from protocol import addUnknownAtoms
addUnknownAtoms()

These coordinates will have proper covalent geometry.
To correct covalent geometry (bonds, angles and impropers):
from protocol import fixupCovalentGeom
fixupCovalentGeom(’resid 30:50’) # this may cause significant changes in

# the selected atomic positions
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Topology and Parameters

Topology specifies how residues and (small)
molecules are connected.
Parameters specify force constants, bond lengths,
atomic radii, etc.
For standard proteins and nucleic acids, no special
action required.
For modified or artificial residues or small molecule
ligands, may need to generate new topology and
parameters:
∙ PRODRG http://davapc1.bioch.dundee.ac.
uk/cgi-bin/prodrg

∙ ACPYPE
http://webapps.ccpn.ac.uk/acpype/

Topology Entry for Alanine
residue ALA

group
atom N type=NH1 charge=-0.36 end
atom HN type=H charge= 0.26 end

group
atom CA type=CT charge= 0.00 end
atom HA type=HA charge= 0.10 end

group
atom CB type=CT charge=-0.30 end
atom HB1 type=HA charge= 0.10 end
atom HB2 type=HA charge= 0.10 end
atom HB3 type=HA charge= 0.10 end

group
atom C type=C charge= 0.48 end
atom O type=O charge=-0.48 end

bond N HN
bond N CA bond CA HA
bond CA CB bond CB HB1 bond CB HB2 bond CB HB3
bond CA C
bond C O

improper HA N C CB !stereo CA
improper HB1 HB2 CA HB3 !stereo CB

end

For water refinement (see Water Refinement below), alternate topology and parameters
are required. Please see the examples.

25

http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://webapps.ccpn.ac.uk/acpype/


Atom Selections in Python
We use a subset of the XPLOR atom selection language, described here.
from atomSel import AtomSel
sel = AtomSel(’’’resid 22:30 and

(name CA or name C or name N)’’’)
print sel.string() #AtomSel objs remember their selection string

resid 22:30 and
(name CA or name C or name N)

AtomSel objects can be used as lists of Atom objects
print len(sel) # prints number of atoms in sel
for atom in sel: # iterate through atoms in sel

print atom.string(), atom.pos() # prints atom string, and its position.

AtomSel objects can be reevaluated:
xplor.simulation.deleteAtoms("resid 1:2")
sel.reevaluate()
print len(sel) # prints the correct number of atoms

Atomwise AtomSel operations:
from atomSel import intersection, union, notSelection
sel2 = AtomSel(’name C’)
intersection(sel,sel2); union (sel,sel2); notSelection(sel)
Named atom selections:
import atomSelLang
atomSelLang.setNamedSelection(xplor.simulation,"nTerminus",

AtomSel("resid 1:140").indices())
atoms = AtomSel(’recall nTerminus’)

Order of atoms in an AtomSel is the order in the PSF.
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File Formats: mmCIF and NEF
PDB replacement format for atomic coordinates: mmCIF

loop_
_atom_site.group_PDB
_atom_site.id
_atom_site.type_symbol
_atom_site.label_atom_id
_atom_site.label_alt_id
_atom_site.label_comp_id
_atom_site.label_asym_id
_atom_site.label_entity_id
_atom_site.label_seq_id
_atom_site.pdbx_PDB_ins_code
_atom_site.Cartn_x
_atom_site.Cartn_y
_atom_site.Cartn_z
_atom_site.occupancy
_atom_site.B_iso_or_equiv
_atom_site.Cartn_x_esd
_atom_site.Cartn_y_esd
_atom_site.Cartn_z_esd
_atom_site.occupancy_esd
_atom_site.B_iso_or_equiv_esd
_atom_site.pdbx_formal_charge
_atom_site.auth_seq_id
_atom_site.auth_comp_id
_atom_site.auth_asym_id
_atom_site.auth_atom_id
_atom_site.pdbx_PDB_model_num
ATOM 1 N N . MET A 1 1 ? -14.136 1.321 3.616 1.00 0.93 ? ? ? ? ? ? 1 MET A N 1
ATOM 2 C CA . MET A 1 1 ? -13.451 0.063 4.032 1.00 0.36 ? ? ? ? ? ? 1 MET A CA 1
ATOM 3 C C . MET A 1 1 ? -11.981 0.360 4.336 1.00 0.36 ? ? ? ? ? ? 1 MET A C 1
ATOM 4 O O . MET A 1 1 ? -11.557 1.499 4.315 1.00 0.64 ? ? ? ? ? ? 1 MET A O 1
ATOM 5 C CB . MET A 1 1 ? -13.532 -0.987 2.924 1.00 1.26 ? ? ? ? ? ? 1 MET A CB 1
ATOM 6 C CG . MET A 1 1 ? -14.934 -0.967 2.313 1.00 1.15 ? ? ? ? ? ? 1 MET A CG 1
ATOM 7 S SD . MET A 1 1 ? -15.215 0.142 0.911 1.00 1.64 ? ? ? ? ? ? 1 MET A SD 1
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NMR Exchange Format (NEF)
Contains
∙ sequence, molecular identity
∙ chemical shifts
∙ NOE peak lists
∙ Derived Restraints

– distance
– dihedral
– RDC

save_nef_chemical_shift_list_bmrb21.str
_nef_chemical_shift_list.sf_category nef_chemical_shift_list
_nef_chemical_shift_list.sf_framecode nef_chemical_shift_list_bmrb21.str
_nef_chemical_shift_list.atom_chemical_shift_units ppm

loop_
_nef_chemical_shift.chain_code
_nef_chemical_shift.sequence_code
_nef_chemical_shift.residue_type
_nef_chemical_shift.atom_name
_nef_chemical_shift.value
_nef_chemical_shift.value_uncertainty

A 10 HIS C 175.19 0.4
A 10 HIS CA 56.002 0.4
A 10 HIS CB 30.634 0.4
A 10 HIS CD2 119.578 0.4
A 10 HIS HA 4.687 0.02
A 10 HIS HBX 3.106 0.02
A 10 HIS HBY 3.201 0.02
A 10 HIS HD2 7.067 0.02
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Using potential terms in Python
Available potential terms in the following modules:
∙ noePot - NOE distance restraints
∙ rdcPot - dipolar coupling
∙ sardcPot - RDCs in steric alignment media - J.-r. Huang and S. Grzesiek
∙ rdcCorrPot - fit RDCs without alignment tensor - C. Camilloni and M. Vendruscolo
∙ csaPot - Chemical Shift Anisotropy
∙ cstMagPot - refine against chemical shift tensor magnitudes and orientations
∙ jCoupPot - 3J-coupling
∙ prePot - Paramagnetic relaxation enhancement
∙ diffPot - refine against rotational diffusion tensor
∙ relaxRatioPot - refine directly against NMR relaxation data
∙ solnScatPot - potential for solution X-ray and neutron scattering
∙ planeDistPot - distance between atoms and plane
∙ gyrPot - pseudopotential enforcing correct protein density
∙ residueAffPot - contact potential for hydrophobic attraction/repulsion
∙ xplorPot - use XPLOR potential terms
∙ posSymmPot - restrain atomic positions relative to those in a similar structure
∙ potList - a collection of potential terms in a list-like object.

All potential objects have the following methods:
instanceName() - name given when created
potName() - name associated w/ potential type, e.g. "RDCPot"
scale() - scale factor or weight (force constant). Set with setScale(val).
calcEnergy() - calculate and return term’s (scaled) energy
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Distance Restraints - the NOE potential term
Most commonly used effective NOE distance 𝑅 is computed:

𝑅 = (
∑︁
𝑖𝑗

|𝑞𝑖 − 𝑞𝑗 |−6)−1/6

“sum averaging” - usually effectively picks out the shortest interatomic distance.

Potential Energy: piecewise quadratic

“Square potential”

𝑉 (𝑅) =

⎧⎪⎪⎨⎪⎪⎩
(𝑅− 𝑑− 𝑑𝑚𝑎𝑥)

2 for𝑅 > 𝑑+ 𝑑𝑚𝑎𝑥

(𝑅− 𝑑+ 𝑑𝑚𝑖𝑛)
2 for𝑅 < 𝑑− 𝑑𝑚𝑖𝑛

0 in between

d = 4.0
dmin = 2.2
dmax = 1.0
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R (Å)R (Å)

XPLOR assignment statement
assign (resid 2 and name HA )(resid 19 and name HB# ) 4.0 2.2 1.0 !#
or (resid 6 and name HA )(resid 27 and name HB# ) !ambiguity
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NOE potential term
creating an NOEPot object:
from noePotTools import create_NOEPot
noe = create_NOEPot("noe","noe_all.tbl")
#noe.setPotType("soft") #uncomment if bad NOE restraints may be present

use:
print noe.instanceName() # prints ’noe’
print noe.potName() # prints ’NOEPot’
noe.setAveExp(5) # change exponent for 1/r^6 sum

# a reduced value reduces barriers
print noe.rms() # the rmsd from the allowed distance range
noe.setThreshold( 0.1 ) # violation threshold
print noe.violations() # number of violations
print noe.showViolations()
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Residual Dipolar Couplings
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Dipolar Coupling potential
Provides orientational information relative to axis fixed in molecule frame.

𝐷AB = 𝐷𝑎[(3𝑢
2
𝑧 − 1) +

3

2
𝑅(𝑢2𝑥 − 𝑢2𝑦)] ,

𝑢𝑥, 𝑢𝑦, 𝑢𝑧- projection of bond vector onto axes of an alignment tensor. 𝐷𝑎, 𝑅- measure of
axial and rhombic tensor components.

rdcPot - used for RDCs in solution and ssNMR dipolar couplings
∙ tensor orientation encoded in four axis atoms
∙ allows Da, R to vary: values encoded using

extra atoms.
∙ reads both SANI and DIPO XPLOR

assignment tables.
∙ allows multiple assignments for bond-vector

atoms - for averaging.
∙ allows ignoring sign of 𝐷𝑎 (optional)
∙ can (optionally) include distance dependence:
𝐷𝑎 ∝ 1/𝑟3.

∙ tensor values can be computed using SVD.

ANI500:Y

ANI500:PA2

ANI500:Z

ANI500:PA1

ANI500:X

→can also be used for paramagnetic pseudocontact shifts.
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How to use the rdcPot potential
from varTensorTools import create_VarTensor, calcTensor, calcTensorOrientation
ptensor = create_VarTensor(’phage’) #create a tensor object

ptensor.setDa(7.8) #set initial tensor Da, rhombicity
ptensor.setRh(0.3)
ptensor.setFreedom(’varyDa, varyRh’) #allow Da, Rh to vary

from rdcPotTools import create_RDCPot
rdcNH = create_RDCPot("NH",oTensor=ptensor,file=’NH.tbl’)

calcTensor(ptensor) #calc tensor parameters from current structure
#using SVD

calcTensorOrientation(ptensor) #calc tensor orientation (with fixed Da, Rh)
#from current structure using SVD

NOTE: no need to introduce psf files or coordinates for axis/parameter atoms- this is
automatic.
analysis, accessing potential values:
print rdcNH.rms(), rdcNH.violations() # calculates and prints rms, violations
print ptensor.Da(), ptensor.Rh() # prints these tensor quantities
rdcNH.setThreshold(0) # violation threshold
print rdcNH.showViolations() # print out list of violated terms
from rdcPotTools import Rfactor
print Rfactor(rdcNH) # calculate and print a quality factor

34



RDCPot: additional details
using multiple media:
btensor=create_VarTensor(’bicelle’)
rdcNH_2 = create_RDCPot("NH_2",tensor=btensor,file=’NH_2.tbl’)
#[ set initial tensor parameters ]
btensor.setFreedom(’fixAxisTo phage’) #orientation same as phage

#Da, Rh vary

multiple expts. single medium:
rdcCAHA = create_RDCPot("CAHA",oTensor=ptensor,file=’CAHA.tbl’)

rdcCAHA is a new potential term using the same alignment tensor as rdcNH.
Normally, experiments are normalized to NH Da values.
from rdcPotTools import scale_toNH
scale_toNH(rdcCAHA,’CAHA’) #rescales RDC prefactor relative to NH

# includes gyromagnetic ratios and
# bond lengths

Sign convention: the default is to consider the 15N gyromagnetic ratio to be positive, i.e.
the sign of NH experiments is flipped in the input tables. If you do not follow this
convention, place the following at the beginning of your script:
from rdcPotTools import correctGyromagneticSigns
correctGyromagneticSigns()

Scaling convention: scale factor of non-NH terms is determined using the experimental
error relative to the NH term:
rdcCAHA.setScale( (5/2)**2 )
# inverse error ^^^ in expt. measurement relative to that for NH

Note: the square well potential is only used for nonbonded (e.g. H-H) experiments.
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RDCs in Steric Alignment Media
When alignment is due solely to molecular shape.
from sardcPotTools import create_SARDCPot
sardc = create_SARDCPot("saRDC","NH.tbl")
J.-R. Huang and S. Grzesiek, “Ensemble calculations of
unstructured proteins constrained by RDC and PRE data: a case
study of urea-denatured ubiquitin,” J. Am. Chem. Soc. 132,
694-705 (2010).

∙ Important for ensemble calculations where RDCPot leads to underdetermined
alignment tensors.

∙ Input tables are the same format used in RDCPot.

One can extract a traditional Xplor-NIH alignment tensor:
from varTensorTools import saupeToVarTensor
from sardcPotTools import saupeMatrix

#generate a VarTensor representation of the SARDC alignment tensor
medium = saupeToVarTensor( saupeMatrix(sardc),dmax )

print medium.Rh() #print rhombicity
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Chemical Shift Anisotropy potential
Provides additional orientational information from the full chemical shift tensor from
measurements in an aligning medium.

Δ𝛿 =
∑︁
𝑖,𝑗

𝐴𝑖𝜎𝑗 cos
2(𝜃𝑖,𝑗)

𝐴𝑖 - a principal moment of the alignment tensor
𝜎𝑗 - a principal moment of the CSA tensor
𝜃𝑖,𝑗 - angle between the 𝑖th orientation tensor principal axis and the 𝑗th CSA tensor
principal axis.
How to use the csaPot potential
from csaPotTools import create_CSAPot
csaP = create_CSAPot(name,oTensor=tensor,file=’csaP.tbl’)

csaP.setDaScale( val ) # s.t. can be used with RDC alignment tensor
csaP.setScale( forceConstant )
calcTensor(tensor) #use if the structure is approximately correct

NOTE: create_CSAPot uses built-in values for the chemical shift tensor. Alternate values
can be specified by modifying csaPotTools.csaData.
→can be used with ssNMR CSA or chemical shift tensor data.
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J-coupling potential
Karplus relationship

3𝐽 = 𝐴 cos2(𝜃 + 𝜃*) +𝐵 cos(𝜃 + 𝜃*) + 𝐶,

𝜃 is a torsion angle, defined by four atoms.
𝐴, 𝐵, 𝐶 and 𝜃* are set using the COEF statement in the j-coupling assignment table (or
using object methods).

Use in Python
from jCoupPotTools import create_JCoupPot

# set Karplus parameters while creating the potential term.
jCoup = create_JCoupPot("hnha","jna_coup.tbl",

A=15.3,B=-6.1,C=1.6,phase=0)

analysis:
print Jhnha.rms()
print Jhnha.violations()
print Jhnha.showViolations()
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Paramagnetic Relaxation Enhancement

Γ = 𝑆𝐴𝐵(𝜏𝑐)𝑟
−6
𝐴𝐵,

𝑟𝐴𝐵 - distance between paramagnetic center and amide proton.
𝑆𝐴𝐵(𝜏𝑐) - function of correlation time 𝜏𝑐.

from prePotTools import create_PREPot
pre = create_PREPot("pre","file.tbl",

eSpinQuantumNumber=2.5,
freq=500, # Larmor frequency in MHz
tauc=3.0, # correlation time in ns
fixTau=True)

potList.append(pre)

∙ uses modified Solomon-Bloembergen Eq. which can account for tag motion and
multiple tag conformations.

∙ can simultaneously determine correlation time.

Example in eginput/pre/refine/newRefine.py

Iwahara, et. al. JACS 126, 5879 (2004).

[in old XPLOR interface: PMAG term - Donaldson, et. al. JACS 123, 9843 (2001).]
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Solvent Paramagnetic Relaxation Enhancement data
Empirical relationship:

ΓsPRE ≈ 𝐴𝑆Acc +𝐵

with effective surface area:

𝑆Acc ≈
(︃∑︁

𝑖

𝑟−2
𝑖

)︃−1

𝑟𝑖 is distance of amide proton in question to a heavy atom, and the sum is over all heavy
atoms.

from nbTargetPotTools import create_NBTargetPot, calibrate
psol = create_NBTargetPot(’psol’,’file.tbl’,restraintFormat=’xplor’)
#psol.setPotType("correlation")
calibrate(psol) # determine A and B by fit to experiment
potList.append(psol)

also used to describe solvent NOE.
Wang, et. al. J. Magn. Res. 221, 76 (2012).
Another, more rigorous term available, not yet published.
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Use of Relaxation Data in Structure Calculation
Yaroslav Ryabov

Ratio of transverse to longitudinal relaxation rates: 𝜌 = 𝑅2/𝑅1 contains information on
bond vector orientation relative to a diffusion tensor.
The diffusion tensor can be computed from atomic coordinates.
Thus: relaxation data can be used to obtain bond vector and overall shape information.

# read in relaxation data from file relax.dat
# data format specified by tablePattern
from diffPotTools import readInRelaxData, mergeRelaxData, make_ratio
relax_data = readInRelaxData("relax.dat",

pattern=tablePattern,
verbose=True)

from diffPotTools import make_ratio
for item in relax_data: make_ratio(item)

from relaxRatioPotTools import create_RelaxRatioPot
pot =create_RelaxRatioPot(’relax’,

data_in = relax_data,
freq = freq, #spectrometer freq
temperature =temperature, # expt. temp.

)
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Use of Relaxation Data in Structure Calculation
Used for docking Improves structures with sparse restraints:

→

∙ temperature is an approximate fit parameter and should usually be optimized
(facilities included).

∙ outliers are determined automatically, and updated regularly during a calculation

References
docking:
Y. Ryabov, G.M. Clore, C.D. Schwieters, J. Am. Chem. Soc. 132, 5987-5989 (2010).
single domain:
Y. Ryabov, C.D. Schwieters, and G.M. Clore, J. Am. Chem. Soc. 133, 6154–6157 (2011).
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Gyration Volume potential - a pseudopotential
NOE distance restraints: approximate, loose.

Result: determined structures are too
loosely packed.

But: Proteins pack to a constant
density of 1.43±0.03 g cm−3

Approximate protein shape as
ellipsoidal: gyration tensor:

𝐺 =
1

𝑁

𝑁∑︁
𝑖=1

Δ𝑞𝑖 ⊗Δ𝑞𝑖,

gyration volume 𝑉𝑔 ≡ 4/3𝜋
√︀
|𝐺|

Predict
𝑉𝑔 ≈ 𝑉 𝑟𝑒𝑠

𝑔 𝑁𝑟𝑒𝑠,
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The 𝑉𝑔 potential

𝐸𝑔𝑦𝑟 = 𝑤𝑔𝑦𝑟

(︁
𝑤(1)
𝑔𝑦𝑟𝐸𝑝(𝑉𝑔 − 𝑉 𝑟𝑒𝑠

𝑔 ; 0)

+𝑤(2)
𝑔𝑦𝑟𝐸𝑝(𝑉𝑔 − 𝑉 𝑟𝑒𝑠

𝑔 ; Δ𝑉𝑔)
)︁

𝐸𝑝(𝑥,Δ𝑥) =

⎧⎪⎪⎨⎪⎪⎩
(𝑥−Δ𝑥)2 for 𝑥 > Δ𝑥

(𝑥+Δ𝑥)2 for 𝑥 < −Δ𝑥

0 otherwise

Example of use of this term:
from gyrPotTools import create_GyrPot
gyr = create_GyrPot(’Vgyr’,’not resname ANI’)
potList.append(gyr)

Reference: C.D. Schwieters and G.M. Clore, J. Phys. Chem. B 112, 6070-6073 (2008).
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The TorsionDB potential
G. Bermejo et al - Protein Sci. 21, 1824, (2012); Structure, 24, 806 (2016).

Improved dihedral angle potential of mean force based on observed protein structures.

Histidine Valine

from torsionDBPotTools import create_TorsionDBPot
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torsionDB=create_TorsionDBPot(’torsionDB’,
system="protein", #rna and dna also valid
selection=’not recall nTerminus’)

potList.append( torsionDB )
rampedParams.append( MultRamp(.002,2,"torsionDB.setScale(VALUE)") )
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using XPLOR potentials
The XPLOR non-bonded potential
import protocol
from xplorPot import XplorPot
protocol.initNBond(repel=1.2) #specify nonbonded parameters
vdw = XplorPot(’VDW’)

print vdw.violations() #print number of overlapping atom pairs
print vdw.calcEnergy() #term’s energy
print vdw.potName() # ’XplorPot’
print vdw.instanceName() # ’VDW’

all other access/analysis done from XPLOR interface.
All parameters for the nonbonded term are listed in the XPLOR manual.

Dihedral Restraints:

given a restraint table generated by e.g. TALOS-N:
import protocol
from xplorPot import XplorPot
protocol.initDihedrals("dihedrals.tbl") #dihedral restraint table
dihe = XplorPot(’CDIH’)
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The XPLOR RAMA (torsion angle database) potential

deprecated protein and nucleic acid dihedral angle potential of mean force
import protocol
from xplorPot import XplorPot
protocol.initRamaDatabase()
potList.append( XplorPot(’RAMA’) )

For nucleic acids, the XPLOR
ORIE potential: database-derived
basepair packing (translation and
orientation)

References: J. Kuszewski et al , J. Am. Chem.
Soc. 123, 3903-3918 (2001); Clore &
Kuszewski, J. Am. Chem. Soc. 125,
1518-1525 (2003).

→Important for proper
base-stacking separation.

xplor.command("@dna_positional.setup") #some external setup necessary
potList.append( XplorPot("ORIE") )
rampedParams.append( StaticRamp("potList[’ORIE’].setScale(0.2)") )

Other commonly used XPLOR terms: BOND, ANGL, IMPR, HBDB, COLLapse.
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using XPLOR potentials
Example using a Radius of Gyration (COLLapse) potential
import protocol
from xplorPot import XplorPot

#helper setup function
protocol.initCollapse(’resid 3:72’) #specify globular portion

# GyrPot (gyration volume) can be
# used for non-globular domains

rGyr = XplorPot(’COLL’)
xplor.command(’collapse scale 0.1 end’) #manipulate in XPLOR interface

default target=2.2 *𝑁0.38
𝑟𝑒𝑠 − 1

(empirical relationship for compact globular proteins)

accessing associated values
print rGyr.calcEnergy() #term’s energy
print rGyr.potName() # ’XplorPot’
print rGyr.instanceName() # ’COLL’

all other access/analysis done from XPLOR interface.
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using XPLOR potentials
other terms have no Python helpers, and must be configured via the XPLOR interface.

XRay Diffraction
xplor.command(r’’’
xref

.

.

.
end
’’’)
potList.append( XplorPot("xref") )

Fiber XRay Diffraction
xplor.command(r’’’
fiber

.

.

.
end
’’’)
potList.append( XplorPot("xref") )

References:
R.C. Denny et al , Fibre Diffr. Rev 6, 30-33 (1997) ; H. Wang and G.
Stubbs, Acta Cryst A49, 504-513 (1993).
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Collections of potentials - PotList
potential term which is a collection of potentials:
from potList import PotList
pots = PotList()
pots.append(noe); pots.append(Jhnha); pots.append(gyr)
pots.calcEnergy() # total energy

nested PotLists:
rdcs = PotList(’rdcs’) #convenient to collect like terms
rdcs.append( rdcNH ); rdcs.append( rdcNH_2 )
rdcs.setScale( 0.5) #set overall scale factor
pots.append( rdcs )
for pot in pots: #pots looks like a Python list

print pot.instanceName()

noe
hnha
COLL
rdcs
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Implementing a new potential term - in Python
from pyPot import PyPot ; from vec3 import norm, Vec3
class BondPot(PyPot):

’’’ example class to evaluate energy, derivs of a single bond’’’
def __init__(self,name,atom1,atom2,length,forcec=1):

’’’ constructor - force constant is optional.’’’
PyPot.__init__(self,name) #first call base class constructor
self.a1 = atom1 ; self.a2 = atom2
self.length = length; self.forcec = forcec
return

def calcEnergy(self):
self.q1 = self.a1.pos() ; self.q2 = self.a2.pos()
self.dist = norm(self.q1-self.q2)
return 0.5 * self.scale() * self.forcec * (self.dist-self.length)**2

def calcEnergyAndDerivList(self,derivs):
energy = self.calcEnergy()
deriv1 = Vec3(map(lambda x,y:x*y,

[self.forcec * (self.dist-self.length) / self.dist]*3 ,
( self.q1[0]-self.q2[0],

self.q1[1]-self.q2[1],
self.q1[2]-self.q2[2] )))

derivs[self.a1] += self.scale() *deriv1
derivs[self.a2] -= self.scale() * deriv1
return energy

pass
to use:
p = BondPot(’bond’,AtomSel(’resid 1 and name C’)[0],

AtomSel(’resid 1 and name O’)[0], length=1.5)
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The IVM (internal variable module)
Used for dynamics and minimization

in biomolecular NMR structure determination, many internal coordinates are known or
presumed to take usual values:

∙ bond lengths, angles- take values from high-resolution crystal structures.
∙ aromatic amino acid side chain regions - assumed rigid.
∙ nucleic acid base regions - assumed rigid.
∙ refinement against RDC data can’t distort covalent geometry.
∙ non-interfacial regions of protein and nucleic acid complexes (component structures

may be known- only interface needs to be determined)

Can we take advantage of this knowledge (find the minima more efficiently)?

∙ can take larger MD timesteps (without high freq bond stretching)
∙ configuration space to search is smaller:

Ntorsion angles ∼ 1/9 NCartesian coordinates
∙ don’t have to worry about messing up known coordinates.
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Hierarchical Refinement of the Enzyme II/ HPr
complex

active degrees of freedom are displayed in yellow.
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MD in internal coordinates is nontrivial
Consider Newton’s equation:

𝐹 = 𝑀𝑎

for MD, we need 𝑎, the acceleration in internal coordinates, given forces 𝐹 .
Problems:
∙ express forces in internal coordinates
∙ solve the equation for 𝑎.

In Cartesian coordinates 𝑎 is (vector of) atomic accelerations. 𝑀 is diagonal.
In internal coordinates M is full and varies as a function of time: solving for 𝑎 scales as
𝑁3

internal coordinates.

Solution: comes to us from the robotics community. Involves clever solution of Newton’s
equation: The molecule is decomposed into a tree structure, 𝑎 is solved for by iterating
from trunk to branches, and backwards.

Xplor-NIH implementation: C.D. Schwieters and G.M. Clore; J. Magn. Reson. 152, 288-302 (2001).
A copy of the IVM paper with some corrections is available at
http://nmr.cit.nih.gov/xplor-nih/doc/intVar.pdf
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Tree Structure of a Molecule

TYR3:CG

TYR3:CD1

1a

2a

3a

4a

5a

6a

7a

8a

9a

10a

11a

12a
13a

14a

15a

16a

8b

11b

atoms are placed in rigid
bodies, fixed with respect to
each other.

between the rigid bodies are
“hinges” which allow
appropriate motion

rings and other closed loops are
broken- replaced with a bond.
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Topology Setup
torsion angle dynamics with fixed region:

from ivm import IVM
integrator = IVM() #create an IVM object
integrator.fix( AtomSel("resid 100:120") ) # these atoms are fixed in space
integrator.group( AtomSel("resid 130:140") ) # fix relative to each other,

# but translate, rotate in space

from protocol import torsionTopology
torsionTopology(integrator) # group rigid side chain regions

# break proline rings
# group and setup all remaining
# degrees of freedom for
# torsion angle dynamics
#
# topology setup of pseudoatoms
# e.g. alignment tensor atoms:
# - tensor axis should rotate
# only - not translate.
# - only single dof of Da and Rh
# parameter atoms is significant.
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IVM Implementation details:
other coordinates also possible: e.g. mixing Cartesian, rigid body and torsion angle
motions.
convenient features:
∙ variable-size timestep algorithm
∙ will also perform minimization
∙ facility to constrain bonds which cause loops in tree.

full example script in eginput/gb1_rdc/refine.py of the Xplor-NIH distribution.

Dynamics with variable timestep
import protocol
bathTemp=2000
protocol.initDynamics(ivm=integrator, #note: keyword arguments

bathTemp=bathTemp,
finalTime=1, # use variable timestep
printInterval=10, # print info every ten steps
potList=pots)

integrator.run() #perform dynamics
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High-Level Helper Classes
AnnealIVM: perform simulated annealing
from simulationTools import AnnealIVM
anneal= AnnealIVM(initTemp =3000, #high initial temperature

finalTemp=25, #final temperature
tempStep =25, # temperature increment
ivm=integrator, # ivm object used for molecular dynamics
rampedParams = coolParams) #list of energy parameters to scale

anneal.run() # actually perform simulated annealing

Force constants of some terms are geometrically scaled during refinement: during
simulated annealing step 𝑛 of 𝑁 , the force constant is

𝑘(𝑛) = 𝛾𝑛𝑘(0)

∙ 𝑘(0) and 𝑘(𝑁) - initial and final force constants
∙ 𝛾𝑁 = 𝑘(𝑁)/𝑘(0)

from simulationTools import MultRamp #multiplicatively ramped parameter
coolParams=[]
coolParams.append( MultRamp(2,30, #change NOE scale factor

"noe.setScale( VALUE )") )

59



StructureLoop: calculate multiple structures
from simulationTools import StructureLoop
StructureLoop(structureNums=range(10), # calculate 10 structures

structLoopAction=calcStructure, # calcStructure is function
pdbTemplate=pdbTemplate) # template for output structures

pdbTemplate = ’SCRIPT_STRUCTURE.sa’
#SCRIPT -> replaced with the name of the input script (e.g. ’anneal.py’)
#STRUCTURE -> replaced with the number of the current structure

StructureLoop also helps with analysis:
from simulationTools import StructureLoop, FinalParams
StructureLoop(structureNums=range(10),

structLoopAction=calcStructure,
pdbTemplate=outFilename,
pdbFilesIn="file_*.pdb" # specify input files
doWriteStructures=True, # after calcStructure, write structure, viols
averageTopFraction=0.5, # fraction of structures to use
averageFitSel="not hydro", #atoms used for fitting structures
averagePotList=potList, #terms to use to compute of ave. struct
averageContext=FinalParams(rampedParams), #force constants used
averageFilename="ave.pdb", #output filename
genViolationStats=True, # generate a .stats file with

# energy/violation/structure stats
).run()

StructureLoop transparently takes care of parallel structure calculation.
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Parallel computation of multiple structures
Computation of multiple structures with different initial velocities and/or coordinates:
gives idea of structure precision, convergence of calculation.
on a multi-processor computer:
xplor -smp <number of CPUs> -py ...

on a cluster running PBS: [Supported implementations: PBSPro and Torque]
pbsxplor -l nodes=<number of nodes> -py ...

on a cluster running SLURM:
slurmXplor -py -nodes < num > [options] script.py

on a Scyld cluster
xplor -scyld <number of CPUs> -py ...

or manual node specification
xplor -parallel -machines <machine file> -py ...

convenient Xplor-NIH parallelization
∙ spawns multiple versions of xplor on multiple machines via ssh or rsh.
∙ structure and log files collected in the current local directory.
∙ robust to crashing compute nodes, crashing XPLOR runs, and the presence of dead

nodes
requirements:
∙ ability to login to remote nodes via ssh or rsh, without password
∙ shared filesystem which looks the same to each node
∙ fully populated /bin and /usr/bin directories.

following environment variables set: XPLOR_NUM_PROCESSES, XPLOR_PROCESS
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Integrative Approaches to Structure Calculation
Combine multiple sources of data

Combine NMR data with

∙ Solution Scattering - SAXS, SANS
∙ Cryo-EM
∙ X-ray crystallogaphy
∙ Fiber Diffraction
∙ EPR
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Solution Scattering Intensity
types of experiments:
∙ small-angle X-ray scattering (SAXS)
∙ wide (or large) angle X-ray scattering (WAXS)
∙ Neutron scattering (SANS)

Provides information on overall molecular shape, size
→ complementary to solution NMR
→ very similar sample conditions

Example Spectra:
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Calculating Scattering Intensity
Sum over all atoms: point-source scatterers

𝐴(q) =
∑︁
𝑗

𝑓 eff
𝑗 (𝑞)𝑒𝑖q·r𝑗 ,

scattering vector amplitude: 𝑞 = 4𝜋 sin(𝜃)/𝜆
𝜃 = 0 is the forward scattering direction

effective atomic scattering amplitude: 𝑓eff
𝑗 (𝑞) = 𝑓𝑗(𝑞)− 𝜌𝑠𝑔𝑗(𝑞)

𝑓𝑗(𝑞): vacuum atomic scattering amplitude
𝜌𝑠𝑔𝑗(𝑞): contribution from excluded solvent
->boundary layer contribution can be optionally included

Difference between neutron and X-ray calculation: different 𝑓 eff
𝑖 (𝑞)

Measured intensity
𝐼(𝑞) = ⟨|𝐴(q)|2⟩Ω

⟨·⟩Ω: average over solid angle

Closed form solution: the Debye formula:

𝐼(𝑞) =
∑︁
𝑖,𝑗

𝑓 eff
𝑖 (𝑞)𝑓 eff

𝑗 (𝑞)sinc(𝑞𝑟𝑖𝑗),

sum is over all pairs of atoms. Expensive!
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Scattering Intensity Approximations

Instead, compute 𝐴(q) on a sphere and integrate
over solid angle numerically.

Points are selected quasi-uniformly on the sphere
using the Spiral algorithm:

Additionally, combine atoms in “globs”:

𝑓glob(𝑞) = [
∑︁
𝑖,𝑗

𝑓 eff
𝑖 (𝑞)𝑓 eff

𝑗 (𝑞)sinc(𝑞𝑟𝑖𝑗)]1/2,

Correct globbing, numerical integration errors with a multiplicative 𝑞-dependent
correction factor 𝑐correct:

𝐼(𝑞) = 𝑐correct(𝑞)𝐼approx(𝑞),
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Calculated intensity for DNA scattering: numerical and globbing approximations:
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100 points on sphere
100 points on sphere - using globs
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Boundary layer contribution
Bound water contributes to the scattering amplitude.
Model as a layer of uniform thickness around the molecular structure with density 𝜌𝑏.

∙ Use the Varshneya algorithm to efficiently generate an
outer surface: roll solvent molecule over atoms whose
radii are increased by 𝑟𝑏.

∙ Inner surface is generated using the points and surface
normals.

∙ Each voxel defined by the tesselization procedure
contributes to the scattering amplitude:∑︁

𝑘

𝑓 sph(𝑞; 𝑟𝑘)𝑒
𝑖q·y𝑘 ,

with

𝑓 sph(𝑞; 𝑟𝑘) = 𝜌𝑏4𝜋/𝑞
2[sin(𝑞𝑟𝑘)/𝑞 − 𝑟𝑘 cos(𝑞𝑟𝑘)]

aA. Varshney, F.P. Brooks, W.V. Wright, IEEE Comp. Graphics App.
14, 19-25 (1994)

Alternate fit procedure available if buffer subtraction is significant source of error.
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Determining Solvent Scattering Parameters
as in Crysola three parameters are fit

Effective atomic scattering amplitude:

𝑓 eff
𝑗 (𝑞) = 𝑓𝑗(𝑞)− 𝜌𝑠𝑔𝑗(𝑞),

𝑓𝑗(𝑞): vacuum atomic scattering
amplitude
𝜌𝑠: bulk solvent electron density
amplitude due to excluded solvent:

𝑔𝑗(𝑞) = 𝑠𝑉 𝑉𝑗 exp(−𝜋𝑞2𝑉
2/3
𝑗 )×

exp[−𝜋(𝑞𝑟𝑚)2(4𝜋/3)2/3(𝑠𝑟
2 − 1)]

𝑉𝑗 : atomic volume
𝑟𝑚: is the radius corresponding to the
average atomic volume
𝑠𝑉 , 𝑠𝑟: scale factors to be fit.

Bound solvent scattering amplitude

𝑓 sph(𝑞; 𝑟𝑘) = 𝜌𝑏4𝜋/𝑞
2[ sin(𝑞𝑟𝑘)/𝑞 −

𝑟𝑘 cos(𝑞𝑟𝑘)]

𝜌𝑏: boundary layer electron density
𝑟𝑘: radius corresponding to voxel
volume.

three parameters are fit using a grid search.
For SANS: one additional parameter: isotropic background added to calculated 𝐼(𝑞).

aD. Svergun, C. Barberato and M.H.J. Koch, J. Appl. Cryst. 28, 768-773 (1995).
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Solution Scattering of Rigid Bodies
For atoms within a rigid body, the relative atom positions do not change, so after an
initial calculation the corresponding contribution to the scattering amplitude can be
computed without referring to atomic positions. If r′𝑗 is the atomic position of atom 𝑗

after displacement of the rigid body with initial posistion given by r𝑗 , then

r′𝑗 = 𝑅r𝑗 +Δr,

where 𝑅 and Δr, respectively, describe the rotation and translation of the rigid body, the
corresponding rigid body scattering amplitude is:

𝐴rigid(q; {r}) = 𝑒𝑖Δr·q𝐴0
rigid(q

′; {r}),

where {r} denotes the dependence on the set of initial atomic coordinates and

q′ = 𝑅𝑇q.

In practice, 𝐴rigid(q; {r}) is computed using a spline over a spherical surface of constant 𝑞

to evaluate 𝐴0
rigid(q

′; {r}), the scattering amplitude at initial atomic position, but rotated
scattering vector amplitude, q′.
The use of this expression yields vast speedups when a calculation can be decomposed
into a small number of rigid bodies, as it becomes independent of the number of atoms.

69



Refinement against solution scattering data
Refinement target function

𝐸scat = 𝑤scat
∑︁
𝑗

𝜔𝑗(𝐼(𝑞𝑗)− 𝐼obs(𝑞𝑗))
2,

𝑤scat, 𝜔𝑗 : weight factors
Typically set 𝜔𝑗 = 1/Δ𝐼obs(𝑞𝑗)

2 - inverse square of error. → so 𝐸scat ∼ 𝜒2.

∙ Correction factor 𝑐correct periodically recomputed.
∙ Non-zero scattering contribution from surface-bound solvent- periodically computed,

effect included in 𝑐correct
∙ Rigid subunits’ scattering contribution computed very efficiently during dynamics,

minimization.
∙ Buffer background subtraction can be included using
solnScatPotTools.fitSolventBuffer.

∙ SANS data is also supported
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Example Xplor-NIH SAXS setup
from solnXRayPotTools import create_solnXRayPot
import solnXRayPotTools
xray=create_solnXRayPot(’xray’,

experiment=’saxs.dat’,
numPoints=26,
normalizeIndex=-3,preweighted=False)

xrayCorrect=create_solnXRayPot(’xray-c’,
experiment=saxs.dat’,
numPoints=26,
normalizeIndex=-3,preweighted=False)

solnXRayPotTools.useGlobs(xray)
xray.setNumAngles(50)
xrayCorrect.setNumAngles(500)
potList.append(xray)
crossTerms.append(xrayCorrect)
#corrects I(q) for globbing, small angular grid and
# includes solvent contribution corrections
from solnScatPotTools import fitParams
rampedParams.append( StaticRamp("fitParams(xrayCorrect)") )
rampedParams.append(StaticRamp("xray.calcGlobCorrect(xrayCorrect.calcd())"))
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Example Xplor-NIH SANS setup
bound-solvent contribution frequently much less important
from sansPotTools import create_SANSPot
import sansPotTools
sans=create_SANSPot(’sans’,

experiment=’sans.dat’,
numPoints=20,
fractionD2O=0.41,
fractionDeuterated=1.,
altDeuteratedSels=[("resid 601:685",0.)],
cmpType="plain",
normalizeIndex=-3,preweighted=False)

sansPotTools.useGlobs(sans)
sans.setNumAngles(80)
sans.setScale(40)
potList.append(sans)
#correct using the Debye equation
rampedParams.append( StaticRamp("sans.calcGlobCorrect(’n2’)") )

72



Cryo Electron Microscopy Data
Detailed molecular size and shape information!

Gong et. al. Plos One 10, e0120445 (2015)

from atomDensity import DensityGrid
Dmap = DensityGrid()
Dmap.readCCP4(’map1.ccp4’,verbose = True)
from probDistPotTools import create_probDistPot
prob = create_probDistPot("prob",Dmap,"not pseudo and not name H*",

potType = "cross_correlation",)
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Cryo EM + NMR: TRPV1 with bound double-knot toxin

Bae et. al. eLife, 5, e11273 (2016).
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Refinement against an ensemble
Refinement of DNA 12-mer using NOE, RDC and X-ray scattering data

four calculated structures One four-membered ensemble
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Refinement against an ensemble

esim = EnsembleSimulation(’ensemble’,3) #creates a 3-membered ensemble

creates two extra copies of the current atom positions, velocities, etc.
Ensemble members don’t interact, except with explicit potential terms.
Ensemble Features:
∙ Heterogeneous ensembles of mixed species can be treated.
∙ Ensemble calculations can be parallelized by specifying the -num_threads option to

the xplor command.
∙ Care is taken to ensure data locality on Linux NUMA hardware.

Energy terms:
AvePot- average over the ensemble with no intra-ensemble interactions.

from avePot import AvePot
aveBond=AvePot(XplorPot,’bond’) # ensemble averaged bond energy

aveBond’s energy is ⟨𝐸BOND⟩𝑒 averaged over the ensemble.
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Refinement against an ensemble
Most NMR observables must be averaged appropriately- AvePot is not appropriate- it
only averages ensemble energies.

For example, the appropriate RDC value is ⟨𝐷AB⟩𝑒 averaged over the ensemble. The
resulting energy is then 𝐸(⟨𝐷AB⟩𝑒).
Most Python energy terms will do proper ensemble averaging. XPLOR terms will not.

Additional potential terms: RAPPot, ShapePot - restrain atom positions within an
ensemble - so members don’t drift too far apart.
Example: restrain the positions of 𝐶𝛼 atoms to be the same in all members of the
ensemble.

from posRMSDPotTools import RAPPot
rap = RAPPot("ncs","name CA") # create term
rap.setScale( 100.0 )
rap.setPotType( "square" ) # harmonic potential has a flat region
rap.setTol( 0.3 ) # 1/2-width of flat region
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Can also refine against bond-vector order parameter for ensemble of size 𝑁𝑒, with unit
vector 𝑢𝑖 along the appropriate bond vector in ensemble member 𝑖

𝑆2 =
1

2𝑁2
𝑒

∑︁
𝑖𝑗

(3 cos(𝑢𝑖 · 𝑢𝑗)2 − 1)

[can use data from e.g. relaxation experiments.]
from orderPot import OrderPot
orderPot = OrderPot("s2_nh",open("nh_s2.tbl").read())

and crystallographic temperature factor for atom 𝑗 in terms of 𝑞𝑖𝑗 , it’s position in
ensemble 𝑖, and it’s ensemble-averaged value 𝑞𝑗

𝐵𝑗 = 8𝜋2/𝑁𝑒

∑︁
𝑖

|𝑞𝑖𝑗 − 𝑞𝑗 |2

from posRMSDPotTools import create_BFactorPot
bFactor = PotList("bFactor")
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Variable Ensemble Weights
Setting ensemble weights
esim = EnsembleSimulation(’ensemble’,3)
esim.setWeights( [0.2,0.1,0.7] ) # set weights for all ensemble members
noe = NOEPot(’noe’)
noe.setEnsWeights( [0.2,0.1,0.7] ) # set weight for only this NOE term

Ensemble Weights can be optimized during structure calculation.

from ensWeightsTools import create_EnsWeights
ensw = create_EnsWeights(’ensw’)
ensw.setWeights([0.2,0.2,0.6]) # set the initial/target weights
from sardcPotTools import create_SARDCPot
rdc = create_SARDCPot("RDC",restraints=stericRDC)
rdc.addEnsWeights(ensw) # specify that this potential term use this set

# of ensemble weights

different potential terms can have different ensemble weights

potList.append(ensw) #potential term biases the weights towards
# initial values

Using the EnsWeights energy term avoids situations with zero ensemble weight.
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Symmetric Multimers
Maintain 𝐶2 Symmetry

“NCS” term - keep dimer subunits identical
from posDiffPotTools import create_PosDiffPot
diNCS = create_PosDiffPot("diNCS", "segid A", "segid B")
potList.append(diNCS)

Distance symmetry to enforce 𝐶2 symmetry

from distSymmTools import create_DistSymmPot, genDimerRestraints
dSymm = create_DistSymmPot(’dSymm’)
for r in genDimerRestraints(segids=[’A’,’B’],

resids=range(10,150,10)):
dSymm.addRestraint(r)
pass

dSymm.setShowAllRestraints(True)
potList.append(dSymm)

Proper NOE distance calculation for SUM averaging subunit ambiguous restraint: the
nMono setting
noe.setNMono(2)
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Refinement in Explicit Solvent

Nederveen AJ, et. al., “RECOORD: a
recalculated coordinate database of 500+
proteins from the PDB using restraints from the
BioMagResBank,” Proteins, 59, 662-672 (2005).

Refinement Protocol:

1. solvate with water

2. heat system while
restraining protein heavy
atoms

3. high temperature dynamics

4. simulated annealing

import waterRefineTools
waterRefineTools.refine(potList=potList, coolingParams=rampedParams)

example in eginput/gb1_rdc/wrefine.py
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Calculations Using Implicit Solvent: EEFx
The EEFx Implicit Solvent Model

Y. Tian, et. al., “A Practical Implicit Solvent
Potential for NMR Structure Calculation ,” J. Magn.
Res. 243, 54-64 (2014).

Can be used at all stages of
structure determination.

Example in
eginput/gb1_rdc/refine_eefx.py

Now also includes implicit
membrane potential.

Reference No Solvent Using EEFx

from eefxPotTools import create_EEFxPot, param_LK
eefxpot=create_EEFxPot("eefxpot","not name H*",paramSet=param_LK)
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Implicit Solvent with a membrane: EEFx
Ye Tian, C.D. Schwieters, S.J. Opella and F.M. Marassi, “A Practical Implicit Membrane
Potential for NMR Structure Calculations of Membrane Proteins,” Biophys J. 109, 574-585 (2015).

No Membrane Using EEFx+membrane

Example in eginput/eefx/membrane
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EEFXPot improves accuracy, precision and conformation
of membrane protein structures
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VMD interface: VMD-XPLOR

vmd-xplor screenshot
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∙ visualize molecular structures
∙ visualize restraint info
∙ manually edit structures
∙ generate publication-quality figures

load multiple files at once

% vmd-xplor -noxplor refine*.pdb

command-line invocation of separate Xplor-NIH and VMD-XPLOR jobs:

% vmd-xplor -port 3359 -noxplor
% xplor -port 3359 -py

Xplor-NIH snippet to draw bonds between backbone atoms, and labels:
import vmdInter
vmd = VMDInter()
x = vmd.makeObj("x")
x.bonds( AtomSel("name ca or name c or name n") )
label = vmd.makeObj("label")
label.labels( AtomSel("name ca") )
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Graphical Representation of ensembles

atom Prob: intelligently convert ensemble of structures into a probability distribution.
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The PASD facility for automatic NOE assignment
developed by John Kuszewski

sometimes referred to as Marvin
main features:
∙ implemented in TCL interface.
∙ initial assignment likelihoods set by topological network of interconnected distance

restraints.
∙ probabilistic selection of good NOE assignments
∙ for a given NOE peak, multiple possible assignments are simultaneously enabled

during initial passes.
∙ inverse (repulsive) NOE restraints are used, consistent with the current set of active

assignments.
∙ soft linear NOE energy.
∙ during structure calculation assignment likelihoods slowly change from relying on

prior data to reflecting structures.
∙ successive passes of assignment calculation are not based on previously determined

structures.
∙ in addition to NOE data, TALOS dihedral restraints are used.
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The PASD facility
each NOE cross-peak generates a Peak

each Peak can have zero or
more Peak Assignments

each Peak Assignment contains a from- and a to- Shift Assignment - selections of one or
more atoms (containing generally indistinguishable atoms such as stereo pairs).

distances calculated between these selections using 1/𝑟6 summing.
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The PASD facility

Initial Likelihoods

network analysis:
mark as likely assignments between
residues with more interconnecting
assignments.

Primary sequence filter:
when there are multiple choices,
always choose intra-residue
assignment. Long range
assignments get zero initial
likelihood.
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The PASD facility
Initial Likelihoods

network analysis: a contact map
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The PASD facility
each assignment is activated or deactivated based on combination of current distance
violations and prior likelihoods.
𝜆𝑖: likelihood of assignment 𝑖:

𝜆𝑖 = 𝑤0𝜆𝑝𝑖 + (1− 𝑤0)𝜆𝑣𝑖

𝜆𝑝𝑖 - prior likelihood fraction of good structures from
previous calculation pass in which assignment 𝑖 is
satisfied.

𝜆𝑣𝑖 - instantaneous likelihood [= exp(−Δ2
𝑖 /𝐷

2
𝑣)]

Δ𝑖 - violation of assignment 𝑖

𝐷𝑣 - tunable parameter
𝑤0 = 1 . . . 0 - relative weight of 𝜆𝑝𝑖 to 𝜆𝑣𝑖

assignment 𝑖 is activated if random num between 0 . . . 1 is smaller than 𝜆𝑖

Entire collection of assignments is accepted or rejected using a Monte Carlo criterion,
based on the NOE energy. Activation/deactivation of assignments is continued until
Monte Carlo acceptance.
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PASD Assignment optimization protocol
pass 1:
∙ start with collapsed structure with random torsion angles
∙ Linear NOE pot used.
∙ Inverse NOE potential used.
∙ high temp 1: 4000K

– activation/deactivation carried out 10 times using only prior likelihoods.
– only C𝛼 nonbonded repulsion is enabled.

∙ high temp 2: 4000K
activation/deactivation carried out 10 times using equally weighted prior and instantaneous
likelihoods (𝑤0 = 0.5).

∙ cooling: 4000 → 100K
64 assignment activation/deactivation steps, with decreasing 𝐷𝑣

𝑤0 reduced from 0.5 → 0.
∙ prior likelihoods regenerated from top 10% of structures.

pass 2:

∙ quadratic NOE potential used.

∙ high temp: 4000K
assignment, single activated assignment chosen at 10 intervals, based solely on the pass 2
prior likelihoods.

∙ cooling: 4000 → 100K
assignments selected, restraints activated/deactivated 64 times 𝑤0 reduced 0.5 → 0. force
constants increased.
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The PASD facility
Final Assignment:
∙ final likelihoods are computed for each assignment from top 10% of structures.
∙ incorrect restraint should have all likelihoods near 0
∙ correct restraint should have one assignment with a likelihood near 1.

Results:
∙ Demonstrated successfully on proteins with over 210 residues.
∙ method can tolerate about 80% bad NOE data.
∙ failure is clearly indicated by a low value of resulting NOE coverage: the number of

long-range high-likelihood assignments per residue. [ a value > 2 ]
∙ poor structural precision may mean that the algorithm failed, or that only subregions

have been determined.
∙ regardless, high-likelihood assignments are very likely to be correct.

input formats supported: nmrdraw, nmrstar (including combined version 2.1), pipp,
xeasy, Sparky, and NEF.
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Helper Programs
The following helper programs are distributed with Xplor-NIH, and present in the bin
subdirectory of the Xplor-NIH distribution. If the --symlinks DIR option to the
configure script was used during installation, symbolic links to the programs will be
present in the directory DIR. These options can be supplied to any Xplor-NIH command.

xplor: Invoke Xplor-NIH. Use the -py option for the Python interface.
pyXplor: Invoke the Xplor-NIH Python interpreter.
tclXplor: Invoke the Xplor-NIH TCL interpreter.
getBest: Print out the filenames of the lowest energy structures listed in an

Xplor-NIH .stats file. By default, all .stats files in the current directory are
consulted. It can also be used to create symbolic links to these files.

seq2psf: Generate a PSF file from a PDB file. This is only possible for PDBs
with standard residues.

pdb2psf: Generates a psf file from the given pdb file. The psf file is written to a
filename derived the input filename.

targetRMSD: Compute positional RMSD to a reference structure.
calcTensor: Calculate alignment tensor using SVD given RDC (or PCS) values

and one or more molecular structures. Can optionally create plot of observed
vs. calculated RDCs.

calcETensor: Calculate an ensemble of SVD alignment tensors from an ensemble
of structures and observed RDC values. The tensors are underdetermined.

calcDaRh: Calculate an estimate of alignment tensor Da and rhombicity from
input RDC values (no structures) using the assumption of isotropically
distributed bond vectors and a maximum likelihood approach. The rdc tables
use default Xplor-NIH format.
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domainDecompose: Given an ensemble of structures, find regions of structural
similarity, using maximum-likelihood fitting.

mleFit: Fit structures and determine unstructured regions using the maximum
likelihood methodology of D.L. Theobald and D.S. Wuttke, "THESEUS:
Maximum likelihood superpositioning and analysis of macromolecular
structures," Bioinformatics 22, 2171-2172 (2006).

calcSAXS: Given a molecular structure, compute a SAXS or SANS curve,
optionally fitting to experiment. Also compute optimal excluded solvent
parameters (including boundary layer contribution).

calcSAXS-bufSub: Given a molecular structure, compute a SAXS curve, fitting
to experimental an SAXS curve, while performing background subtraction.
This is an adaptation of the AXES algorithm: A. Grishaev, L.A. Guo, T.
Irving, and A. Bax, "Improved fitting of solution X-ray scattering data to
macromolecular structures and structural ensembles by explicit water
modeling," J. Am. Chem. Soc. 132, 15484-15486 (2010).

torsionReport: Generate report on all protein torsion angle values for one or
more structure files. Reports generated for individual structures and averages.

findClusters: This script clusters structures by their positional RMSD, using the
given atom selection.

compareTensors: Given two raw Saupe matrices, compute the normalized scalar
tensor product and the dot product between axes. Also, compute angle of
rotation between two axes

aveStruct: Given an ensemble of structures, compute an unregularized average
structure and report per-atom RMSD.

ens2pdb: Converts an ensemble of structure files to a single PDB, with structures
separated by MODEL records. The SEGID field is written to the ChainID
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field so it must be, at most, a single character. The result should be acceptable
for PDB submission.

calcSARDC: Given one or more structures, compute the Residual Dipolar
Couplings resulting from partial alignment in a steric alignment medium and
compare with observed values, optionally producing a plot. This will produce
garbage for measurements made in charged alignment media.

contactMap: Generate contact map from one or more pdb files.
ramaStrip: Perform Ramachandran analysis on each specified residue. Print

contours levels containing 98% and 99.8% of all high-resolution structure. For
each structure specified, plots a blue point if the associated phi/psi value lies
inside the 99.8% contour, and a red point otherwise. For each structure, also
print out all violated phi/psi values on stdout. For a description of the
structure database and generation of the density surface, please see G.A.
Bermejo, G.M. Clore, and C.D. Schwieters, Protein Science 21, 1824-1836
(2012).

scriptMaker: Generate an Xplor-NIH script using a graphical user interface
(written by Alex Maltsev).

calcDimerConc: Given subunit concentration and Kd, return dimer and
monomer concentrations

convertTalos: Convert Talos+ and talos-N output to phi/psi torsion-angle
restraints for use in Xplor-NIH. The allowed range of torsion angles will be all
those from the ten Talos+/TalosN hit values. This script will produce
restraints for all residues which for which Talos+/N classifies its predictions as
"Good" or "Strong". By default, hits are ignored if Talos+/N give them zero
weight.

runSparta: Compute the backbone chemical shifts, and optionally fit to
experimental values. This uses a modified version of "SPARTA+: a modest
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improvement in empirical NMR chemical shift prediction by means of an
artificial neural network Yang Shen and Ad Bax," J. Biomol. NMR, 48, 13-22
(2010).

plotLog: Create a two dimensional plot from X-Y data.
calcPSol: Compute the solvent PRE given a molecule structure and a restraint

list.
pbsxplor: Generate a PBS script and submit it as a PBS job using qsub.
slurmXplor: Generate a SLURM script and submit it as a s job using sbatch.
idleXplor: Edit and run Xplor-NIH scripts.
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Where to go for help
online:
http://nmr.cit.nih.gov/xplor-nih/ - home page
mailto:xplor-nih@nmr.cit.nih.gov - mailing list
http://nmr.cit.nih.gov/xplor-nih/faq.html - FAQ
http://nmr.cit.nih.gov/xplor-nih/doc/current/ - current

Documentation
http://nmr.cit.nih.gov/xplor-nih/doc/current/python/tut.pdf - Tutorial
http://nmr.cit.nih.gov/xplor-nih/xplor-nih-tutorial.tgz - Hands-on

Examples

subdirectories within the xplor distribution:
eginputs - newer complete example scripts
tutorial - repository of older XPLOR scripts
helplib - help files
helplib/faq - frequently asked questions

Python:
M. Lutz, “Learning Python, 4th Edition” (O’Reilly, 2009);
http://python.org

TCL:
J.K. Ousterhout “TCL and the TK Toolkit” (Addison Wesley, 1994);
http://www.tcl.tk

Please complain! and suggest!
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