This ordered metrization protocol can be modified to improve the conformational sampling of the coordinates produced. Random metrization picks the root atoms in random order, so that the molecule's conformational freedom is not necessarily used up in just one region.
A modification of these two metrization algorithms in the X-PLOR distance geometry routines gives equally good conformational sampling and reduces the CPU time requirements. In partial metrization, the bounds matrix is resmoothed after choosing distances from only a fraction of the root atoms, after which distances are chosen from the other atoms without resmoothing. This procedure works reliably, even with only four root atoms used in the retightening phase. If very large structures are calculated, the number of root atoms may have to be increased beyond four. The variable $NON_MET_GAP is automatically set by the program to the size of the largest interval in the bounds matrix after (partial) metrization. If $NON_MET_GAP exceeds a few Å, the number of root atoms has to be increased.
Xplor-NIH 2013-06-06