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gles compared witB NV, coordinates in atomic Cartesian space,
We present a software module which allows one to efficiently whereN, is the number of atoms. Hence, the conformational
perform molecular dynamics and local minimization calculations space is about an order of magnitude smaller if torsion angle
in internal coordinates when incorporated into a molecular dy- are used. Furthermore, in torsional angle molecular dynam-
namics package. We have implemented a reference interface toics (TAMD)), it is typical that the timestep required to maiimt
the NIH version of the X-PLOR structure refinement package and a given level of energy conservation is about ten times farge
show that the module provides superior torsion angle dynamics than that required in atomic Cartesian space because the hig
functionality relative to the native X-PLOR implementation. The frequency bond bending and stretching motions have been re-
module has been designed in a portable fashion so that interfacing moved. Other aspects of the simulation might also be made
it with other packages should be relatively easy. Other featuresfo more efficient because bond and bond-angle forces no longer
the module include the ability to define rather general internal co- need be calculated and because there are fewer coordinates t
ordinates, an accurate integration algorithm which can automati- update in the integrator. However these final two aspects hav
cally adjust the integration step size, and a modular design which not been found to make a significant contribution to dynamics
facilitates extending and enhancing the module. run times in practice.
An efficient recursive algorithm for dynamics in internat co
ordinates was originally introduced in the robotics litera[1,
1. INTRODUCTION 2, 3, 4]. This algorithm was then implemented for TAMD in X-

In the past ten years efficient algorithms have made compgy and NMR refinement packages [5, 6, 7] and in a more gen-
tationally tractable the use of internal coordinates inennt eral purpose molecular dynamics package[8, 9]. In the otirre
lar dynamics simulations of systems of biological intefast/- Paper we report the implementation of a general internat var
ing more than say 100 atoms). Internal coordinates are an &le dynamics module (IVM) for efficient molecular dynam-
tractive alternative to the Cartesian coordinates of eaoma ics. It allows general hinge definitions including thosedise
when particular degrees of freedom are not of interest. FBAMD, but also allowing more general coordinates which are
example, in the process of NMR structure determination af@Propriate when some degrees of freedom are of interest and
refinement in which one seeks molecular structures consistgthers are not; for instance, in the refinement problem ofca tw
with experimental NMR data, the bond lengths and bond ang@@tein complex in which the backbone coordinates of the iso
are generally taken as fixed - and no information about thedéed protein structures are already known.
features is generally available from the NMR experiments. | The IVM also includes local minimization routines (Powell
these known coordinates are removed from the local optimizaethod conjugate gradient and steepest descent) so tisat the
tions and molecular dynamics simulations, the confornmatio techniques can be conveniently employed in the same coor-
search space becomes smaller and more rapidly sampled. dinate system. Our package employs an efficiéhtorder
example, typical proteins have approximataly/3 torsion an- predictor-corrector integrator, which requires one farealua-
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2 C.D. SCHWIETERS AND G.M. CLORE

tion per timestep and allows for automatic timestep adjastm tion appropriate for torsion-angle-only dynamics is dégrdn
We have implemented loop constraints to maintain bond kengtigure 1

in ring topologies, although as yet we found the feature tofbe  The clusters are connected by “hinges” which allow motion
limited use. Finally, the code has been developed in a highly one cluster relative to its parent. These hinges perroieh
modular fashion to make the addition of new hinge definitjongegrees of freedom appropriate to those internal coomsnat
integrators and minimizers a relatively simple task. Th8lI \yhich one wishes to allow. Hence, freely rotating and trans-
not a stand-alone program as it does not have code to evalygifg clusters with three or more atoms would héwdegrees
forces and lacks support for file formats, etc. Itis curneitt  of freedom, while torsion-angle-only motion would be repre
terfaced to the NIH version of X-PLOR[10], and we intend t@ented by a hinge with a single rotational degree of freedom.
integrate the IVM into other packages. concrete example of hinge coordinates is given in Sectibn 2.

In the next section, we derive the equations of motion inin- | - .\ 40 e tree topology, one must disregard cova-

ternal coordinates and outline the recursive solutionebtien nt bonds closing rings and loops such as those arising from

. i ) e
3 we documen'_[ the details of the curr(_ent |mplemer_1tat|on. lﬂsulfide bonds. These bonding relationships can be retadse
section 4 we give two examples of using the IVM in the re-

8 ; . . using one of several methods: an appropriate bonding poten-
finement of NMR structures. Finally, section 5 contains so g Pprop gp

M t | th licitl
concluding remarks. The software can be obtained as partI energy term can be employed, the bond can be explicitly

) . cBhstrained in the dynamics, or, for small rings, the ring loca
the NIH version of X-PLOR[10], or by contacting the al"thorstreated as a flexible (non-rigid) cluster[11], with only ted

ring degrees of freedom active. The IVM allows for the first so

2. FORMULATION lution, and also implements the second ring-closing tempi
In Cartesian coordinates, Newton’s equations are wép described in Sec. 2.6
known: In the tree structure, each cluster is identified by a painof i
) dices. The first identifies the cluster level, and varies betw
V.V = miﬂ 1) andN;. We term the level cluster the base, and those clusters
q’ dt? ’ at the ends of the branches the tips. The second index lddeels t

) . o particular branch at a given level. This label is not neeard f
where g; is the position of the™ atom, m; is its mass and

V is the total potential energy. Eqg. (1) reflects the fact that
the atomic coordinates are coupled only in the potential en-
ergy term. However, in internal coordinates, Newton's ¢igua

reads 2 Qﬂ’ &
d=0

—VV = ME +C, 2 OBC

N
1lc
whered describes a vector of internal coordinatéss a vector @_@k
of Coriolis forces present because these coordinates are no h
inertial; andM is a mass matrix which is, in general, not diag- G
onal and the elements of which vary as the coordinates chang: a
in time. An equation for the mass matrix is given in Section
2.4. Naively, in solving Eq. (2), one would expect to expend @ Qed
computational effort proportional to the cube of the numtifer @ S Q
internal coordinates, making its solution more expendiant 7d
the evaluation of the forces, and resulting in unacceptpbbr 8<d % o
performance for most molecules of biological interest. How ‘ o
ever, Jairet. al. [1, 2] and Bay and Haug [3, 4] have come up
with recursive algorithms to solve Eq. 2 with effort dirgqplro-
portional to the number of internal coordinates if the malec
is decomposed into a hierarchical tree structure as desthie-
low. We outline this recursive algorithm in Section 2.5.

Following Ref. [1], we decompose a molecule of interest
into collections of one or more atoms which we group terthﬁrG. 1. The tree structure of a three-residue protein fragment decsetp
in rigid bodies referred to as clusters. Within a given @ughe into clusters appropriate for torsion-angle dynamics. Tiralvers represent the

relative positions of the atoms are specified. An arbitrdug-c cluster level (distance from the base), while the lettermotiethe branch. The

ter is then chosen as the base and covalently bonded clusjg}&ond in the ring of the pheny! group shows where a bond maibrdien
in"order to impose the tree structure. However, in refinemdottzdions the

are assigned as children. This process is repeated Umm_EH” relative position of the atoms in the phenyl group are knowdhthos are usually
clusters have been placed in the tree. A cluster tree decgimpg@rouped into a single cluster.
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unbranched structures and is usually omitted in this pagrer f Then the velocity of atom in clusterk is

clarity. Further notes on notation: ,
0 _ (0 (z))

e Quantities with superscrip(®), (i), or (c) denote the ap- Qe = Qe-1,0F R’“fl(quo ~ Ge-10 T Gk
propriate initial quantity, value in internal coordinates value +Rk,1q,§l) + Rk(q,(ffl — q,fg)
in Cartesian coordinates, respectively.

e R denotes a rotation matrix.

¢ 1 represents a unit matrix of appropriate dimension.

® Superscripﬂ" denotes the transpose operation. .. Where we have used the relationshkif/dt = @R whereR
* Atilde over a vector denotes the tensor associated With & o1atjon matrix describing a rotation relative to a fixefer-
Vector's cross producte. in matrix representation ence frame and is the associated angular velocity. Likewise,

= Gr—1,0 + Dr—1 (Qr,n — Qh—1,0) + €xSk
~(0) p(4), (0 0y -
+Ry 18\ )R,i)(qlﬁ,z, - q,ﬁ,é)fk : @)

0 —a, ay the time-dependence of the rotation matrix obeys the fatigw
a= a; 0 —agp |, (3) recursive relation
—ay Gy 0 )
R, = OwRy
such thatib = a x b, for vectorsa andb. » ‘f’“ » (0) (i) »
= Wp_1Rk + Ri_16;, " R, 7 (8)

2.1. Example Hinge Coordinates

As a concrete example of the coordinates used we considelf we definevy, = g o, then, from Eq. (7) we have
the branchless tree segment depicted in Fig 2 with the pasiti
of atomn in clusterk represented as Uk = Up—1 + Op—1 (qr,0 — qr—1,0) + €xSk )

(0) (0) (i))

Gk = Qr—1,0 + Re-1(dp 0 — @10 T G and from Eg. (8) we can also write

+R(¢? — O 7 4 ,
(i~ ko) . ) Ok — @1 = Re18 O RYRTH,
with the rotation matrixR, = Rk,lR,(j). [Note that here the _ Rk_1é(0)R£ Fh
second subscript denotes the atom within this cluster and not i g - (10)
= klk »

the branch.] Hingé corresponds to the bond between atoms at
positionsgy o andqy_1 . Displacements from the parent clus-_ . .
i : rewritten as

ter, such as those due to a bond stretch, are represented by th
relative internal position,”’, while internal rotatu_ms relaft_lve to Op = D1 + Ept. (11)
the parent cluster are represented by the rotation mBﬁ?x

Consider the example case in which the only allowed degrdegs. (9) and (11) allow one to determine the linear and amgula
of freedom between clusteksandk — 1 ares;, the displace- velocities of clustek recursively from the internal velocities
ment from equilibriumsg)) of the bond between atoms at posiand7 and from its parent’s linear and angular velocities. The
tionsgy, o andgy_1.5, such that general recursive equations for angular and linear vedscétre
, o) (0 given in the next section.

q,(;) = (s + s,(C ))e,(C ),

wheree,, is the unit vector in the directioq, o — gi_1.; andry, 2.2. General recursive expression for spatial velocity

the torsion angle about this bond resulting in the rotatiarin ~~ The spatial velocity of clustek is defined [12] as the block

about this bondR,(f), whose time derivative is given by vector
)=o) ® - (). @)
k

Egs. (9) and (11) can be generalized in the following regarsi
expression for the spatial velocity of th& cluster

cluster k

Ok o b hinge k+1

Ok-1,b

w:(ﬁ):ﬁkmﬂ+ﬂﬁh (13)

bop1 = <

FIG. 2. Hierarchical hinge/cluster decomposition. As there aremaathes in H;, = 'k (()t) i (14)
this example, only a single cluster index is used here. 0 hk

cluster k-1

cluster k+1
Here



4 C.D. SCHWIETERS AND G.M. CLORE

Wherehé‘l) andhg) are matrices, the columns of which respecwherel}, is the inertia tensor aboyt, o:
tively denote the angular and translational degrees ofriate

2
freedom of hingek. These directions should be normalized, Iy = ka,nHQk,n — qrol’1 (22)
such that" H, = 1. Typically, the base clustek (= 1) will "
be allowed all degrees of rotational and translationaldope —(qk,n — @,0)(qk,n — ar0)" ] -

(H = 1). The vectord,, contains all of the allowed internal

degrees of freedom of hinge Thus, the spatial equations of motion in the absence of kinge
In practice, the coordinates used for integration can be dB(an then be written as

ferent from those in which the angular velocity is expressed

For instance, it is convenient to use the four Euler pararsete F,Sc) = Myag + by, (23)

(quaternion representation) to describe the orientati@rigid

body, while only three angular velocities are expressedhén twhere

equations of motion. For simplicity, we ignore this subtlat © (c)
our current notation. B = (c) (24)
Time-differentiation of Eq. (13) leads to the following tee ~
sive equation for the spatial acceleration: _ Wi Lpwy
br ~ (25)
. : o . MOk (qr,c — qr,0)
ar = Vk = gbgﬁkflv}c*l + (bgyk*lak*l + Hl?ek + ngk Mk _ ( Ik mk’((jk’,c - @:,0) ) (26)
= ¢£’k71ak,1 + ngk + ag , (15) "lk(Qk,c - Qk,O) my 1l

Eqg. (23) is a form of the Newton-Euler Equation [12].
Now, a hinge couples adjacent clusters by means of equal
0 o 0 o and opposite forge on the tvvp clusters. At the position;of
a = < D0k — V1) ) ( 0 o > Ox . (16) we write the spatial force which parent cluster- 1 exerts on
clusterk asF}, and the spatial force from daughter cluster1
as—op+1,6Fr+1. If a cluster has more than one daughter, the

whereay, is thek!" cluster’'s Coriolis acceleration

2.3. Forces and the Equations of Motion force is the sum of such terms.
The force on atom in clusterk is We can then write the total force on clusteas the sum of
hinge forces and external forces, and thus the spatial iequat
fzgi)z = VoV, (17) of motion for cluster: within a tree is written as
(e) _
whereV is the total potential energy. Recall that, within a clus- Fy — opy1 1 Fryr + F 7 = Myoy + by, . (27)

ter, atomic velocities are given by Now, the atom-based forces can be expressed in terms of in-
ternal coordinates as

Gk = Vi + Or(Ghn — Gr,0) - (18)
T = —V,, V©
Time differentiation gives the rigid-body atomic acceteras . (c)
which are substituted into Newton’s equation of motion for = Hy ;d)kka ; (28)
clusterk to give the equations of motion:
where
() _— () _ -
w = Z fk,cn = ka,an,n Ok t1k - Prk—1 k> K
" T Pk = 1 k=k . (29)
= MOk + MpOL@r (ke — Qk,0) 5 (19) 0 k<K

whereg; . is the position of the cluster's center of mass anéd. (28) is obtained from the definitions of the internal eoor
my, is the cluster mass. The moment about pojnt is denoted dinates and the definition af'“. But we can write the poten-

N,i ), tial energy as a sum of terms expressed in internal and atomic
Cartesian coordinate¥(?) andV(), respectively:
N,EC) = Z(qk,n - Qk,o)flg,c,{ . (20) V= \/(i)(g17 BN+ v (30)

n
F}. can be decomposed into a component acting in the con-
Again replacing the forces US'WQE 9 = my, Gk, @Nd USING  strained degrees of freedom to enforce constraints, andha co
accelerations appropriate for a rigid body yields the fuity ponent in the allowed degrees of freedom arising from energy
equation for moment in terms of rigid body velocities and agerms which depend explicitly on the appropriate intermaire
celerations: dinate. This later force component is projected out as

N = mp(Gre — Gro)d + i + Oplrwr ,  (21) T = Hy.F, . (31)
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It is seen that the projection of the hinge force in the alldwewith
degrees of freedom is precisely the force in those degrees of

freedom due to potential terms which explicitly depend @sth a1
H . a9
coordinates: a=1{a |- (40)

T = —vy VO (32)

Thus, we have the option of expressing individual potexdiad
force) function terms in either internal or atomic coordesa The representation of the Cartesian force in internal doatds

whichever are most convenient. becomes
Finally, Eq. (27) can be regarded as a recursion relatiaon tha , ,
is complimentary to that for acceleration: T = HyF (41)
Fr = ¢ryrkFhpr — B + My, + by (33)  The recursion relation Eq. (33) for the hinge force is reterit
where here one determines the hinge forces starting from fi
tip and working toward the base. £
. . F:
2.4. Spatial Operator Notation and the Internal F— 2| _ {M (c):|
= = +b—F , 42
Coordinate Mass Matrix LE ¢ [Ma (“42)
If clusterk = 0 is chosen to be at rest, Eq. (13) yields
Vo =0 _ with the block-diagonal spatial operator mass matrix defeme
Vi = H]6
Ve = 65 Vi + Hb, VA
. . 2 .
= ¢ HY 01 + Hy 0 M=|{ 90 0 M .. |- (43)
Vs = ¢35, Vo + Hy 05 :
= ¢ H{ 61+ 0H 02+ Hi 63, (34)

and so on. These equations are rewritten in spatial operdidfa!ly, we use the operator counterpart of Eq. (31) conbine
notation [1, 2] as with Egs. (39) and (42) to obtain the equations of motion in

internal coordinates as

\%1
Vs — 7@ — Ao
V= Vi _ $THTH, (35) HE=T% =M6+C (44)
with the internal variable mass matrix and Coriolis terms de
fined respectively as
where
1 o1 31 ... M = HoMo"HT | (45)
0 1 ¢s3o ...
¢=100 1 .. (36) and
Do ' C=Ho [M¢Ta T F<C>} : (46)
H 0 0 ...
0 Hy 0 ... Note thatM is a non-diagonal matrix whose elements change
H=1909 0 H ... (37)  with time (¢ and H depend on cluster position). From this
S point, one then can use the recursive algorithm described be
low to solve ford with computational effort proportional to the
01 number of clusters.
02 For a branched molecule, the spatial equations take exactly
0 =10 |- (38)  the same form as Egs. (35)-(46), where now all clusters \ih t
same level have the same indexThe components of the spa-
o tial operator quantities themselves become block vectods a
Likewise, matrices. For example, if there are two branches atthievel,
i the internal velocity vector and th#, ,_; matrix respectively
o . become
a=| g5 |=0"H 0+0¢"a, (39)

Vi — ( “2’: > (47)



6 C.D. SCHWIETERS AND G.M. CLORE

and Loop topologies such as those caused by disulfide bonds in
proteins and by sugar rings in nucleic acids are broken in the

if clusterska andkb have tree decomposition of the molecules atoms into rigid chsste

7 distinct parents One approach to reimpose the broken bonds is to apply cor-
rection forces such that the cluster accelerations areistens

with the bond constraints.

To address the problem of applying bond-length constraints
we consider the situation of two independent trees with time ¢
straint of a single bond between them. This artificial system
contains no loop topologies, but allows a simple formulatd
(48)  the bond-constraint problem and is sufficiently generattier

wherely, = gra0 — qe—1,0. Thus, the generalization of thecurrent discussion. _ _
formulae from unbranched to branched structures is straigh Following Ref. [13], we write the constraint the bond con-
forward. straintC as

1

cooRr
oRr oo
x>
o

ocroRrRocORYT
\_/
=Y

Bz

l

Pk -1 —

if clusterska andkb have a
common parent

2.5. Recursive Solution of the Equations of Motion C:lgie —qaul —c=0, (52)

Jainet.al. [1, 2] have formulated a recursive methodolog
for solving Eg. (2) for the internal coordinate accelenasio
For completeness, we include the algorithm here. For prbof o
its correctness, see Refs. [1] and [2].

Introduce the following ancillary quantities for each dkrs

¥vhereq1t andgq,; are the positions of atoms in two tip clusters
|n treesl and2, respectively, and is the associated nominal
bond length. Differentiating constraint twice with respect to
time results in the following relation between atomic posis,
velocities and accelerations:

k:
Py = b kBl G + My (49a) (G1t = Gor) - (@10 — q2e) + |dae — Goe|> = 0. (53)
_ T
Dy = HyPyHj, (49b)  Wwe enforce the constraint by means of an equal and opposite
G, = PH!'D;* (49c) force between the two atoms
Bf = (1—GiHi)Py (49d)
c fie=—fau = )\((ht - Cht) , (54)
2k = Okt1k2iyq + Prak + b — FY (49e)
ex = T — Hezp (49f)  where) remains to be determined. For simplicity, we consider
_ -1 the case of two independent trees, of which one containgthe t
Vi = Dk €L (499) o i .
+ G 49h atom at positiony;; and the other contains an atom at position
Zp = 2kt Grer, (49h) g2:. The internal coordinates of the two trees are described by
where the recursion sweeps from the tip to the base with theand®fs, respectively. In analogy to Eq. (41), the force on the
boundary conditions at the tip tip atoms can be represented in internal coordinates as
+ _ + _
PN - O’ZN =0. (50) _J1Tf1t ) J2Tf2t s (55)

Then, the updated accelerations are calculated by sweepln

from base to tip with the following recursion relations gpecnvely where

of = ¢\ 101 (51a) Ji = Hi¢1 By (56)
O = v —Grag (51b) andB; projects out the Cartesian velocity of the constraint atom
o = ak +Hk. O + ay, (51c) ontipl,i.e
I .
with o’ = 0. vy = BI'Vy = 16, . (57)

Calculation of the equations of motion entails three sweeps
over eaCh m0|ecu|e. In the firSt SWeep from base to t|p Eq (1'Bhen the equations Of motion for the Chains become
is used to compute spatial velocities. Second is a sweep from
tip to base in which the quantities in Eq. (49) are computed. Myl +¢ = T — T\ (que — ) (58a)
Finally, accelerations are computed using Egs. (51). Thetmo 5 (@) T
computationally expensive step is the second sweep dueto th Mol +Co 7+ J2 Maw —ax) - (58b)
computation of matrix quantities. Typically, Eq. (49a) et

cycle-limiting step resulting in compute time scaling b The internal coordinate acceleration of each chain is broke
with the number of atom clusters. into two parts

2.6. Loop Constraints i, = élf + Ady (59)
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wheref, ; is the acceleration in the absence of the constraint, 3. IMPLEMENTATION
b - M‘l(T(i) —e) (60) 3.1. Integrator
17 = Yo Traditionally, molecular dynamics codes would use the ve-
andAd; is the correction so that is obeyed: locity Verlet algorithm [18] for reasons of computation@hs
. plicity, low memory storage requirements and its efficiency
Aby = =M I Mau — qar) (61) and stability. In internal coordinates, the acceleratiopahds

on the velocity, requiring that the velocity Verlet algbrit be

Likewise, the atomic accelerations become modified. This fact and the extra computational effort reegi

G = g + Aty | (62) to_solve the iqternal_variabl_e equatio_ns of motion _Ie_ad ormet
think the choice of integration algorithm. The original TAM
with implementation in X-PLOR [5, 6] utilized the Runge-Kutta al
. gorithm, but this has the distinct disadvantage of reqgitimee
Ay = J1 A0, (63)  force evaluations at each timestep. The program Dyana [7] em

ployed a modified Verlet algorithm to account for the velgcit
dependent forces. Our code is built in a modular fashiorhab t
Git = Guep + J1 AG, (64a) s has[ be]en Ztrr:liggtfo:jwardI to ilmplerr]nentl% o:;er Rungge—
o -1 4T Kutta [19] and modified Verlet algorithms in addition tc6
= Gus = MA@ —az) (640) order predictor-corrector integrator (PC6) [20], whickaate-
and quires only one force evaluation per timestep.
In the 6" order predictor-corrector used here, the vector of
Gor = Goug + J2 MG I3 Aaque — gar) - (65) internal coordinates and its first five scaled time deristiat

- . . . time ¢ are denoted
Combining these expressions for tip atom accelerations wit

Eq. (53) results in an equation in whighs the only unknown.
This equation can be solved far

Therefore,

B Ed"ﬁ(f)
T onl dim

0 (t) ,n=0...5 (67)

A= (g1t — @) " (IMTUIL + T M5 IS ) (g1t — g2t)] LT = (0©7, ... 9®"), then the prediction step becomes

X[(Grer — Gaep)" (que — o) + ldre — Gatl?] - (66) ¢t + AL = W(t) (68)

In this equation the free accelerations have been calcliese
ing the recursive algorithm, while the quantitiésM; ' J7 are  Where
also calculable by a recursive algorithm [2, 13]. 11111 1

During integration with finite timestep size, there will be 01234 5
drift in the positions and velocities such that they violtte 00136 10
constraint conditionC. Thus, it is desirable to periodically W=10001410 (69)
re-enforceC' with an approach which minimizes the violation 00001 5
of conservation of energy. Such a procedure has been imple- 00000 1

mented in an efficient fashion.

Unfortunately, this procedure becomes expensive whee théfsing the updated positions and velocities, the scalederece
are multiple constrained loop closures, as in nucleic acidstiona = At26/2 is then calculated using the recursive algo-
the \;’s for each loop are coupled together and computéithm, and the state vector is then corrected:
tion become dominated by the computation of the cross terms
JIM~LJE. This problem might be alleviated to some extent q(t+ At) = ¢ (t + At) + UAa, (70)
by the Lagrange multiplier approach of Ref. [14]. Yet anothe
approach would be to choose the coefficiehtsuch that the WhereAa = a — a'® and

associated constraint equations (52) are exactly obeyesicht 3/161
timestep, as in SHAKE [15, 16].
. : . 251/3601
More serious, however, is that in TAMD, the above ap- 1
proach employs the incorrect coordinates for the sugaisring U= 11/181 . (71)
The appropriate coordinates for the rings are ring pucker 1/61
coordinates[17]. However, pucker motion involves a corabin 1/601

tion of torsion angles and bond angles, the latter not beiaira

able in TAMD. One possible solution to this problem withieth  |n our experience the PC6 integrator was found to be the

IVMis to free the bond-angles to allow them to change in comnost efficient: it allowed larger timesteps than the Verlgba

cert with the torsion angles in dynamics calculations. rithm, and requires but one force evaluation per timestég. F
ure 3 displays the energy error per timestep for three iateqr
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schemes for the torsion-angle dynamics of the 57 residue Bihy be more appropriate. The Verlet and Runge-Kutta rositine
domain of protein G[21]. Also shown in the figure is the resulire available in the IVM package, and new algorithms can be
for the TAMD routine native to X-PLOR version 3.851, whichimplemented in a straightforward fashion.
employs a Runge-Kutta integrator. The error is defined as
3.1.1. Sef-Adjusting timestep
SE=<(E—<E>)’>/<E>, (72)  The native integrators in the X-PLOR program require that
one specify the size of the timestep. As an alternative, ane ¢
whereE; is the energy at timestepand the angle brackets de-specify an error tolerance in the total energy and the tiepest
note average over timesteps. In the figure, the timestep$izgs then appropriately adjusted to meet this tolerance. We em

the Runge-Kutta results was dIVIdedlbﬁndi; for the IVM and ployed the approach used in Dyana [7] in which the timestep is
native TAMD results, respectively, to reflect the fact thegyt scaled by thexd hoc factor

take that many force evaluations each timestep. Using\the

metric, one sees that the two Runge-Kutta algorithms parfor 1+ AE, — AE 7 (73)

approximately equivalently and slightly better than thelé&fe TAE

algorithm. Figure 3 clearly shows the performance advantaghere AE, and AE are the target and observed energy error,

for the PC6 approach. The PC6 protocol requires more storagepectively, and is the response time in units of the molecular

and computation than the Verlet algorithm, but this is naitggl dynamics timestep size. In addition, a step is thrown outhed

by the overhead of the recursive algorithm. Example timogs step size halved if the energy error is greater than a thigsho

our platforms suggest that the CPU overhead of the PC6 verglypically 10% of the total energy).

the Verlet is a few percent of runtime. This efficiency pepalt We implemented both fixed- and implicit-timestep ap-

is readily offset by the factor of three or so increase in siep proaches and found that the latter is more flexible and conve-

allowed by the PC6 algorithm. However, for a given set of imient, particular when using the same simulated anneatiog p

ternal coordinates.€. not torsion angles), a different integratortocol with different hinge definitions; for instance, thevea
protocol may be used for torsion angle and Cartesian space
dynamics. The error tolerance is made a set fraction of the
bath temperature and then the annealing protocols can hig-ide
cal, with a larger timestep automatically chosen for theitor-
angle-only dynamics.

3.1.2. Constant Temperature Dynamics

Constant temperature dynamics is desirable for the sielilat
annealing optimization used in structure refinement. Weshav
implemented coupling of the simulated system to a temper-
ature bath using two rudimentary approaches appropriate fo
structure determination dynamics: using velocity rescpiind
using a velocity-dependent force [22]. Here we describe the
velocity-scaling approach as it is the more convenient wigen
ing automatic timestep selection. At each step, all of therin
nal velocities are scaled by

To—T
14 T (74)
— ;irnlzz ot | v_vhereT and_ T, are the syste_m and ba_lth temperature, respec-
——+ PC6 tively, andr is the response time in units of the molecular dy-
e—© TAMD 1  namics timestep size.
1 Some care must be taken in determining the total energy
i 1 in the presence of a bath, since the timestep depends upon
—-15 ‘ ‘ ‘ ‘ it. We used the approach employed in Dyana [7] in which
o35 —30 RS R0 temperature-coupling was achieved by velocity rescadiie
log At the step was taken to evaluate the error in the system energy.

More appropriate for molecular dynamics simulations at-
tempting to reproduce a canonical ensemble would be a ther-
G5 Th _ Cunction of sten size for three Ve mostat using Nas-Hoover chains[23, 24]. Use of the Nis
i the TAMD routine nate o X-PLOR. Note that the IVM Rurgattaand  0OVeT approach would yield more accurate dynamics and
native TAMD step sizes have been dividedband3, respectively, to reflect Would still allow the current automatic timestep adjustiredn
the number of force evaluations at each timestep. gorithm due to the fact that there is a conserved total energy
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However, this thermostat has not yet been implemented in thaving the same form as the mass matrix in internal cooreinat
current framework. Eq. (45), so that we can reuse the algorithm from Sectionf2.5 i
the following substitutions are made:

3.1.3. Sartup
c T
The issue of dynamics initialization becomes important par M — {BM( 'B (80a)
ticularly when many short dynamics runs are required, asts u 6 — 0 (80b)
ally the case in simulated annealing protocols for NMR struc T JTM(c)VO(c) 7 (80c)

ture determination and refinement. There are a number of task

that must be accomplished upon startup. These tasks are itgfid we set, = b = f(¢) = 0. This allows the velocities of the
ized along with the solutions we employed to achieve accefiternal coordinates to be determined with effort promoril
able performance: to the number of atom clusters.

e The internal coordinates must be defined. For torsion ang{ie’ The integrator must be initialized. The PCG integrator re-

dynamics, we have automated the generation of the apptepr uires no extra steps at |n|F|aI|zat|o.n if one is willing Fe'Ftbe
or decreased accuracy during the first few steps: the lindia

hinge definitions. .
9 hei | ) i hth ues ofd™@/dt™ are set to zero forn. = 3...5. This approx-
e The internal coordinates must be determined such that thgyvion was found to be adequate in the current applications

are consistent with a given set of Cartesian coordinate®r(® ¢ yhe |\, but a different approach may be desirable in other
defined tree topology, this mapping is unigue and scaleatiyne circumstances

with the number of atoms.

¢ Internal velocities must be generated that are as consisten
as possible with the given atomic velocities. Because thaiat 3.2. Local Minimization
velocities are free to display non-allowed motion withinxa In local minimization, the mass matrix is not involved, satth
cluster and other motion not allowed by the hinge definitionthe algorithm of Section 2.5 is not necessary. However, & wa
this mapping is not one-to-one. We pose the process as an o@ﬁemed convenient to provide a local minimization facitiy

mization problem with the following objective functional: ~ augment the integrator. For one, this approach allows fzallo
minimization after a dynamics run using the same coordinate
l(v(c) - V(c))TM(c) (V(c) _ V(c)) (75) Also, this addition removes the need for any separate hgidly
20 0 ’ minimization routine.

© ) _ N 0 Again, the minimizer was implemented using a modular de-
whereV;;" is a vector of the given atomic velocities aid ~sign so that multiple algorithms can be implemented witleeas
are the atom velocities determined from a given set of intefyrrently, the most efficient algorithm implemented is a Blbw

nal coordinate velocitie@. We have chosen to scale the objeCyethod derived from the same IMSL code which was used in
tive function by the atomic masses, represented in the d&gox_p| OR[25].

atomic mass matria/ (). To obtain the gradient in internal coordinatd@s = 71 +
The atomic velocities are linearly related to the intermdrdi- 7 , Eq. (41) must be solved. This can be accomplished using
nate velocities by the following recursive formula:
VO — g | (76) 2 = B+ drpiezin (81a)
(c)
T = Hyz, 81b
with k k% (81b)

JT = HoB . 77 solved from tip to base, with, = F,”’ for the tip clusters.

3.3. Hinge Types Thus-far Implemented

As of this writing, hinges have been implemented which al-
low the following categories of motion:

and with BT’ the rectangular matrix which converts cluster spa-
tial velocities to atomic velocities. The internal veloed that
minimize Eq. (75) are then

e Rotations appropriate for rigid bodies consisting of one,
(78)  two or 3+ atoms. Euler parameters [26] are used for acceler-

Now. the effort f Ning thi i | the cub ation calculations, whileXY Z Euler angles [27] are used to
ow, the efiort for solving this equation scales as the CUbe 0,410 gradients with respect to the internal cooréisat

the number of internal coordinates if we use a brute-force ap ) : . . .
proach. Clearly, we would like to avoid this cost if possible * Rotations plus translations appropriate for rigid bodies o

Fortunately, this equation has the same form as that foritise ¢ °"€ °F mgre atoms. )
ter equations of motion, Eq. (2), with the matrix * Torsion-angle-only motion.
e Translation-only motion. Rigid body motion without rota-
JIM© ] =HeBM BT ¢THT (79) tions.

9’ — (JTM(C)J)_leM(C)‘/O(C) .
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It is also simple to fix atoms in space by placing them in a fixedeérms used to enforce reasonable covalent geometry and atom
inertial cluster. We note that adding new hinge definiticna i atom separation. All atomic masses were set to 100 AMU.
straightforward process. The starting coordinates consisted of an extended stejctur
and the annealing protocol employed is summarized as fellow
3.4. Programming Considerations
This IVM was written in the C++ programming language, an ® Initial all-atom Cartesiap coordinate Powell minimizatio
appropriate compromise between performance and ease of #in9 only bond, angle and improper energy terms.
velopment and maintenance. Since we wish this module to be? High temperature torsional angle dynamics at 2000 K for
included in multiple software packages, careful attenticrs 1000 ;teps with all potential terms included except atoomat
paid to both modularity and to performance. For example, §@pulsion.
that new hinge definitions would be easy to implement, run- e A dynamics loop in which atom-atom repulsion is added
time polymorphism was used in the description of the clustép 10 increments of 100 steps each.
plus-parent hinge object. The HingeNode virtual base @dass e A cooling loop in which the temperature is reduced from
capsulates the behavior of a generic hinge-plus-clustecgb 2000 K to 100 K in increments of 25 K - with 39 dynamics
while it is specialized for each specific type of hinge motioe steps taken at each temperature.
it torsion angle, full translation, translation+rotatjagtc. At- e Final all-atom Powell minimization
tention was paid that virtual class methods were not used on
too fine a granularity because of performance considematiohl dynamics calculations were performed with a timestep of
(the calls are indirect and cannot be inlined). Another epdam 10 fs in the internal variable coordinate space consisting2df 3
of the balance between performance and convenience carf@gion angles, with all aromatic rings grouped into rigidse
found in the two vector template classes employed in the IVNErS. Coupling to a temperature bath was achieved by means of
One class was used for arrays, whose size can vary from dhe velocity dependent force method. Numerical resultsewer
invocation to the next, such as those that contain the iater@btained from an executable generated by SGI Irix compéers
coordinate positions and velocities, and another was used full optimization.
vectors of a size (generally small) fixed at compile time.sThi As mentioned previously, the native TAMD procedure em-
latter class was deemed desirable to obviate the need fpr heYys a Runge-Kutta integration scheme which requiresethre
storage and size information for many small vectors and-it fforce evaluations per timestep, while the PC6 algorithm re-
cilitates added compile-time optimization opportunitchese quires but one force evaluation per timestep. The resuiting
of the fixed loop sizes. time of the IVM-based protocol was approximately half thiat o
Despite the attention paid to coding detail here, the codfee native TAMD routine, which is somewhat larger than that
certainly suffers a runtime performance deficit relativette €xpected purely on the number of force evaluations. We be-
equivalent code written in Fortran because of the relatira lieve that the extra overhead is due to the greater geneodlit
piler maturity and language-level features such as Fdstras  the IVM, and its use of C++ as opposed to the Fortran in which
alias guarantee. However, we are pleased with our choicet¢ native TAMD routine was written.
C++ as it allows rapid development, ease of code readabilityVwe then made the following change to the protocol: we re-
and ease of upkeep/modification. Finally, we find the curreBtaced the fixed length timesteps in the dynamics calculatio
performance quite adequate. with timesteps that varied in the fashion described in $acti
3.1.1. The scale factor of Eqg. (73) for the timestep was amose
using the target energy errdrE, set to0.001 kcal/ K times the
bath temperature, and the system-bath coupling was changed
the velocity scaling method. The number of timesteps was al-
4 EXAVPLES OF USE FORNVR STRUCTURE 985001 oder o conpiet e gt e s
DETERMINATION AND REFINEMENT ; . . . . ' .
each of the 10 dynamics simulations in the atom-atom requlsi
We are actively using the IVM presented in this paper fdovop and0.78 ps for each temperature value in the cooling loop.
refining NMR structures within the NIH X-PLOR implementa-These values for the total integration times in the varidinhe

tion. We present two examples of use below. protocol were chosen so that the first two dynamics compsnent
) ] ] had the same values as for the fixed-time protocols, while the
4.1. Protein G: torsion angle dynamics integration time of each dynamics run within the coolingdoo

Here we present an example of NMR structure determinatiaras twice that of the fixed-time protocols.
of the B1 domain of protein G [21] to compare the IVM with the In Figure 4 the refinement energy and root-mean-square de-
TAMD functionality native to X-PLOR version 3.851 [5, 6] andviation (RMSD) from the lowest energy structure are shown fo
to demonstrate the power of the variable timestep funclitgna ten structures calculated by each of the three refinemetda-pro
inthe IVM. In the calculation, experimental nuclear Overbar cols. The fixed-timestep PC6 method resulted in one streictur
effect (NOE) derived interproton distance restraint teand with high energy and an RMSD value larger thaA 4Hence,
dihedral restraint terms were employed in addition to pidén this structure is not visible in the figure. One can see that th
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fixed timestep IVM protocol produces fewer good structures
than does the native TAMD routine, with the former producing
only two structures in the cluster of low energy and low RMSD

structures. This is as we would expect due to the fact that for
equal step size, the Runge-Kutta algorithm has better acgur

than the predictor-corrector algorithm.

On the other hand Figure 4 shows the variable timestep pro-
tocol obtains results of quality equal to the TAMD protocol.
Moreover, the run time for the variable timestep protocol is
about half that that of the fixed timestep IVM protocol, and
it is four times faster than the TAMD protocol. This reductio
in runtime is manifest even though the total time of inteigrat
was significantly larger (abow0ps for the variable timestep
protocol versus approximatefps for the fixed timestep pro-
tocols). This integration time was adjusted to give resedigiv-
alent to those of the TAMD protocol. Significantly betteruks
were obtained when a longer integration time was used. For in
stance, if the total integration time is appropriately dedl{re-
sulting in a run time approximately that of the fixed-time IVM
protocol), we found that all ten structures converged.

The integration step sizAt and system temperature for one
of the PC6 structures are shown as a function of step humbe
in Figure 5. Downward spikes it occur at the beginnings
of dynamics simulations when potential parameters hava bee
changed discontinuously and also when there are atom-aton
collisions. At these steps the integrator detects a larger er
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in energy conservation and halves the step size. Note that de
spite this fact,At stays relatively constant as the temperature

Refinement Energy
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FIG.5. Timestep size and system temperature during a structurendatgion
run of Protein G. The three regions of the dynamics protocelidentified
as a) high temperature equilibration, b) addition of the atdom repulsion
potential, and c) the cooling loop.

decreases due to the fact theF, the energy-conservation tol-
erance, decreases as the temperature is lowered.

Note that when using a fixed step size it is appropriate to tune
the step size for each protocol. It is thus clear that the-auto
adjusting timestep feature provides much in the way of con-
venience. In fact, the exact same (variable step size) gobto
could be used in all-degrees-of-freedom dynamics; theecorr
step size would be chosen by the IVM.

4.2. Two protein complex

Here we present an example of using the IVM module to de-
termine the structure of the complex of enzymedfwith the
histidine phosphocarrier protein HPr, the crystal strreguof
which are reported in Refs. [28] and [29], respectively. For
this example, we reexamine the protocol used in Refs. [3@] an
[31] for determining the structure of the complex from NMR
data given the x-ray structures of the two proteins in isotat
Experimental NMR NOE-derived interproton distance, dipol

Refinement Energy vs. RMS deviation from the minimum energgoupling, and J-coupling restraints were used, as in Réf. [3
structure for refinement with using three integration methtisnative TAMD

integrator, the PC6 integrator with fixed step size and thé P&grator with

In addition to terms corresponding to these data, the refném

the variable timestep feature enabled. The fixed-timestepRe@6ods resulted ENErgy included bond, angle, improper, dihedral, atormats
in one structure with high energy and RMSD values larger than

pulsion, radius of gyration [32] and knowledge-based diaked
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[33] potential terms. The x-ray structures at various sajians interfacial atoms in HPR were allowed to rotate and trasslat
and orientations were used as starting structures. as arigid body.

In the original protocol, two copies each of HPr and%A  In both cases, the protocol is summarized as follows:
were utilized in the dynamics calculations, with the extpies o o ) ]
kept fixed in space. In the primary set of coordinates, attsto ~ ® Rigid-body minimization, with atom-atom repulsion
not belonging to a sidechain at the interface between the twiewly added.
proteins are bound to their corresponding copies using the X e High temperature equilibration dynamics at 3000 K (3000
PLOR non-crystallographic symmetry (NCS) potential. We reéteps with the NCS protocol and 10 ps, approximately 60Gstep
fer to this original protocol as NCS. with the IVM).

We implemented a new protocol in which all dynamics and e A molecular dynamics simulated annealing cooling loop
minimizations were carried out within the IVM. In the IVM in which the force constants and atom-atom repulsion radii a
protocol the interfacial sidechain atoms were allowedrttwei  increased. The NCS protocol utilized 103 stepg ¢ at each
sion degrees of freedom during the dynamics calculatiohs. Ttemperature, while at each step, the IVM used a time duration
remaining atoms in IIA were fixed in space, while the noref 350 fs resulting in approximately 20 integration steps.

e All-atom minimization for the NCS protocol, and rigid
body plus flexible sidechain torsion minimization using the
IVM.

¢ Rigid body minimizations first with the atom-atom repul-
sion and radius of gyration terms turned off and then witlsého
terms turned back on again.

All atomic masses were set to 100 AMU. Four additional
pseudo-atoms were used to define the dipolar-coupling frame
of reference[34]. Both protocols treated these as a rigitiybo
restricted to rotation motion only. Before and after ddpits

of 1A ¢ and HPr are shown in Figure 6

With the above two protocols on the SGI Irix platform, the
IVM performed the calculations about 5 times faster than the
NCS protocol. For reference, the IVM protocol was modi-
fied to allow all internal degrees of freedom for the inteidiac
sidechain atoms during the dynamics portion of refinemedt an
the resulting time was approximately the same as that ubing t
NCS protocol.

All of the resulting structures from both protocols agreed t
within 0.5 A RMS deviation of all non-hydrogen atoms. The
NCS structures had somewhat lower refinement energies: this
was apparently due to the fact that there was some distafion
the covalent geometry in the non-interfacial portion of ne-
teins; this distortion was not possible in the IVM protocas,
those portions were rigid. In particular, the dipolar conglen-
ergy term is rather sensitive to tiny changes in bond ortenta
Further, there is no experimental justification for distaytthe
covalent geometry. The bottom line is that the differences b
tween structures calculated with different initial velggs using
the same protocol were the same size as differences between
structures calculated using the other protocol.

This example indicates two strengths of the IVM. It allows
us to simply consider just those degrees of freedom which are
probed in the experiment. As a result of this feature we were
able to obtain results equivalent to those obtained by a much
more complicated and costly procedure. Secondly, the IVM
provides convenience in that all minimizations and dynamic
simulations can be carried out within the same framework.

(b)

FIG. 6. Hierarchical Refinement of the HPr / IfA€ complex. Flexible interfa-
cial side chains and backbone atoms are displayed. Paneditsla starting
point configuration while panel (b) shows the final structumethe figure, the
backbone atoms are represented by grey tubes. The flexilieseaf HPr and
HAGIC are represented by blue and red lines, respectively. Thisgfiggas cre- 5. CONCLUSION
ated with the VMD-XPLOR visualization program [35, 36]. ’
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In this paper we have presented the internal variable mogl- A.M. Mathiowetz, A. Jain, N. Karasawa and W.A. Goddargmitotein sim-
ule (IVM) for molecular dynamics and minimization calcula- ulation using techniqges suitgble for very large systeme:_c‘ﬁ’ll multipole
tions in internal coordinates. The IVM has been shown to be ;E:hrﬁgtfg d”f%r;ti’r?g:n'gﬁfgﬂj"i;‘ztznddy;r;%?e;‘?vfggggezrz”;”g'gagi)o"e"
an efficient full-featured implementation of the recursik@e- ¢\ "\aideni. A. Jain and W.A. Goddard, Iil Constant temp@ con-
decomposition acceleration evaluation algorithm whidbves strained molecular dynamics: The Newton-Euler inverse massaty
loop topologies to be treated correctly. Furthermore, itere method,J. Phys. Chem. 100, 10508 (1996).
sible, modular design allows new features to be easily pwor 10. Reviewed in G.M. Clore and A.M. Gronenborn, New methodstac-
rated. The IVM is currently actively used by our group in the g’::c rﬁgger/&]g:é fgc'i “&ag/‘;’g‘geg‘g'g{_;ggg“(*{ggg?_tea'\gi?:é'lgno:ﬁ’fg‘at
determination of protein and nucleic aciq ;tructur_es by.NMR hnp:),nmr.'cit.nih:gov)xpl'or_r;ih,_’ '

It should be noted that that constraining arbitrary 'ntbmﬁ. A. Jain and G. Rodriguez, Recursive flexible multibodytesysdynamics
coordinates can result in unphysical dynamical behavi@r F using spatial operators, Guid. Cont. and Dyn. 15, 1453 (1992).
example, it has been shown that constraining bond angle mm-H. GoldsteinClassical Mechanics (Addison-Wesley; Reading, MA, 1980),
tion raises the effective barrier for torsion motion [37]n |  Chapter5.
simulated annealing molecular dynamics calculations tised!3: G. Rodriguez, A. Jain and K. Kreutz-Delgado, A spatiarafor algebra
structure determination, such barriers are mitigated hyngt " Manipulator modeling and contrdft. J. Rob. Res. 10, 371 (1991).
experiment-based potential energy terms and by employifi ;o2 S/hectc megaton of dosed can gy e
a suitably high initial temperature in the annealing protoc  (1999).

Moreover, the detailed dynamical trajectory is of no intefs. j.p. Ryckaert, G. Ciccotti and H.J.C. Berendsen, Numldritegration of
est. However, when performing molecular dynamics in non- the Cartesian equations of motion of a system with consgrainblecular
structure determination contexts, the implications otfiag L6 C\%'::amics gf n-?lkanesl. ngrr;o;t I:hys. 23, 327A 5197;?. f -

degrees of freedom must be given careful consideration. - W.F. van Gunsteren and h..J.L. berendsen, Algorithms ferangolecular

Possible future enhancements include the addition of o) eangr:;';z?Zigznztri'g;Iiyn:rgf:g;zgrﬁﬁgisjflri(ijz@coor "
or more Monte Carlo minimization algorithms, adding a more" nies 5 Am. Chem. Soc. 76, 1354 (1975).
modern local minimization methodology, such as TNPACKg | veriet, computer “experiments” on classical fluids. hefmodynamical
[38, 39], and better treatment of loop constraints. Finafgst Properties of Lennard-Jones MoleculBhys. Rev. 159, 98 (1967).
of the algorithms which the IVM employs are amenable to ef9. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vitig, Numerical
ficient parallelization. For NMR structure determinatiomda  Recipesin C (Cambridge University Press; Cambridge, 1988), p. 569.
refinement parallelization efforts are usually better &sxlion 20. M.P. Allen and D.J. Tildeslegzomputer Smulation of Liquids (Clarendon
processing multiple structures simultaneously. Howevtrer Press; Oxford, 1987), p. 340' ‘ _ _

. . N e . . 21. A.M. Gronenborn, D.R. Filpula, N.Z. Essig, A. Achari, Mhitlow, P.T.
apphcanons_ have different p_arallehzaﬁmn Spe.CIfICBSD\NhICh Wingfield, G.M. Clore, A novel, highly stable fold of the immugiobulin
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