
Protein Structure Elucidation from NMR Data
with the Program Xplor-NIH

Guillermo A. Bermejo and Charles D. Schwieters

Abstract Xplor-NIH is a popular software package for biomolecular structure de-
termination from NMR (and other) experimental data. This chapter illustrates its use
with the de novo structure determination of the B1 domain of streptococcal protein
G (GB1), based on distances from nuclear Overhauser effects, torsion angles from
scalar couplings, and bond-vector orientations from residual dipolar couplings. In-
cluding Xplor-NIH’s latest developments, a complete structure calculation script is
discussed in detail, and is intended to serve as a basis for other applications.

Key words: NMR, Protein structure calculation, Xplor-NIH script

1 Introduction

In its simplest form, the biomolecular structure elucidation problem can be cast as
follows: Finding the three-dimensional all-atom model that optimally satisfies both
the available experiments and general preconceived notions of what a good model
should be (the so-called prior information). The latter involve covalent geometry
(e.g., bond lengths and angles), nonbonded interactions (e.g., steric clashes), and
conformation (e.g., protein side chain rotamers). The optimization is achieved by
creating an energy expression, function of the molecular conformation, comprised
of terms for both the experimental data and prior information, that is subsequently
minimized using a conformational sampling technique. A large number of structural

Guillermo A. Bermejo
Center for Information Technology, National Institutes of Health 12 South Drive, MSC 5624,
Bethesda, MD 20892, e-mail: guillermo.bermejo@nih.gov
Charles D. Schwieters
Center for Information Technology, National Institutes of Health 12 South Drive, MSC 5624,
Bethesda, MD 20892, e-mail: charles.schwieters@nih.gov

1

guillermo.bermejo@nih.gov
charles.schwieters@nih.gov

2 Guillermo A. Bermejo and Charles D. Schwieters

models (also simply referred to as “structures”) are independently calculated in this
fashion. In the NMR field, it is standard practice to keep the k-lowest-energy struc-
tures (where k is typically 10 or 20), to indicate how tightly the system is defined by
the data.

Xplor-NIH [1, 2] is a popular software package for biomolecular structure de-
termination from experimental restraints, able to search conformational space with
a variety of methods, including molecular dynamics and gradient minimization. In
active development since its introduction in 2002, Xplor-NIH has maintained and
improved on the functionality of its predecessor XPLOR program [3], and added
new functionality to take advantage of emerging experiments. Examples from NMR
include improved treatment of residual dipolar coupling (RDC) data [2, 4] and para-
magnetic relaxation enhancements [5], to name two. Increasingly, however, other
experimental sources are being supported, such as small-angle X-ray and neutron
scattering (reviewed in ref. [6]) and cryo-electron microscopy [7]. This experimen-
tal versatility, coupled with sophisticated (albeit easy-to-implement) modeling ca-
pabilities, such as the use of a conformational ensemble approach to account for the
effects of molecular motion in the data [8], makes Xplor-NIH a powerful addition
to the structural biologist’s toolbox.

This chapter illustrates the use of Xplor-NIH with the de novo structure determi-
nation of the B1 domain of streptococcal protein G (GB1), based on NMR distances
from nuclear Overhauser effects (NOEs) and inferred hydrogen bonds, torsion an-
gles from scalar couplings, and bond-vector orientations from RDCs [9]. A structure
calculation script is described in detail, and is intended to serve as a reference for
other applications. Basic knowledge of the Python programming language is as-
sumed.

2 Materials

2.1 Software

Xplor-NIH is freely available to academic and non-profit institutions (version 2.43
or higher is required to run the example script described below). It is officially
supported on Unix/Linux and Mac-OS X operating systems, and can be run on
Windows-based computers within a Linux virtual machine, such as VirtualBox [10],
WMware [11], or QEMU [12]. Details on downloading, licensing, and installing
Xplor-NIH can be found at https://nmr.cit.nih.gov/xplor-nih. Xplor-
NIH provides a scripting interface based on the Python language [13].

https://nmr.cit.nih.gov/xplor-nih

Structure Elucidation with Xplor-NIH 3

Table 1 GB1 NMR restraints

File name Data Descriptiona Restraint Type

noe.tbl NOEs and hydrogen bonds Distance

dihedral.tbl Scalar couplings Torsion angle

bicelles nh.tbl RDCs for directly bound N–HH pairs Bond-vector orientation

in bicelle alignment medium

bicelles hnc.tbl RDCs for C’i–HH
i+1 pairs Bond-vector orientation

in bicelle alignment medium

bicelles nc.tbl RDCs for C’i–Ni+1 pairs in bicelle Bond-vector orientation

alignment medium

tmv107 nh.tbl RDCs for directly bound N–HH pairs Bond-vector orientation

in phage alignment medium

tmv107 hnc.tbl RDCs for C’i–HH
i+1 pairs in Bond-vector orientation

phage alignment medium

tmv107 nc.tbl RDCs for C’i–Ni+1 pairs in phage Bond-vector orientation

alignment medium

a i denotes the residue number.

2.2 Input Files

The Xplor-NIH structure calculation of a monomeric protein, such as the GB1 ex-
ample considered in this chapter, requires the amino acid sequence and the avail-
able experimental data as inputs. The sequence (provided in a file named, e.g.,
gb1.seq) is expressed in the 3-character amino acid nomenclature: MET THR TYR
LYS LEU ILE LEU ASN GLY LYS . . ., and is used to generate a PSF file (file exten-
sion .psf) that describes the specific covalent topology of the system (see below
for details). The experimental data, in this case NOE-derived distances, torsion an-
gles from scalar couplings, and RDCs for different nuclear spin pairs in two molec-
ular alignment media, are condensed into corresponding restraint files (arbitrarily
named, although customarily ending with extension .tbl; see Table 1 for details).
Entries (i.e., restraints) from each restraint file type are shown below as examples.

2.2.1 Distance Restraints

Distance restraint (from file noe.tbl):

4 Guillermo A. Bermejo and Charles D. Schwieters

assign (resid 2 and name HA)(resid 18 and name HN) 4.0 2.2 1.0

where the expressions in parenthesis (here and in all other restraint examples below)
represent atom selections (in this case involving Hα of residue 2 and HN of residue
18), and the sequence of numbers represents d, dminus, and dplus, respectively, which
define the distance restraint bounds: (d−dminus, d+dplus). Atom selections can refer
to more than one atom, for instance in the cases of non-stereospecifically assigned
NOEs or methyl groups [2]. In addition to directly NOE-derived restraints, such
as the above example, there are distance restraints that enforce hydrogen bonds in
secondary structure elements (e.g., as determined by characteristic NOE patterns).
Each hydrogen bond is represented by two “hydrogen bond restraints” in order to
loosely capture the proper hydrogen bond geometry. Here, an example hydrogen
bond between residue 26 and 30, in the middle of GB1’s single α-helix (from file
noe.tbl):

assign (resid 26 and name O)(resid 30 and name HN) 2.3 0.8 0.2
assign (resid 26 and name O)(resid 30 and name N) 3.3 0.8 0.2

2.2.2 Torsion Angle Restraints

Torsion angle restraint (from file dihedral.tbl):

assign (resid 1 and name C) (resid 2 and name N)
(resid 2 and name CA)(resid 2 and name C) 1.0 -105.0 40.0 2

where the atom selections define the torsion angle (in this case, φ of residue 2), the
first number is a scale factor for the energy of this particular restraint, the second
number is the target value (in degrees) to which the torsion is restrained, the third is
a tolerance around the target torsion (in degrees), and the last number is the expo-
nent that defines the shape of the energy bounds (in this case, quadratic). In general,
the restraint scale factor and the exponent are uniformly given values of 1.0 and 2,
respectively, in all torsion angle restraints. Although GB1’s restraints are derived
from scalar couplings, current common practice is to extract torsion angle restraints
directly from chemical shifts (e.g., see ref. [14]).

2.2.3 RDC Bond-Vector Orientation Restraints

RDC restraint (directly bound N–HN pair in bicelle alignment medium; from file
bicelles nh.tbl):

assign (resid 600 and name OO)
(resid 600 and name Z)

Structure Elucidation with Xplor-NIH 5

(resid 600 and name X)
(resid 600 and name Y)
(resid 2 and name N)
(resid 2 and name HN) 2.2690 0.2000

where the first four selections (here involving a dummy residue 600) are ignored,
are present solely for backwards compatibility with old XPLOR energy terms, and
can be empty (although the parentheses must be present). The last two selections
define the bond vector (in this case, the N–HN of residue 2), and the two numbers
are the experimental RDC value and its error (in Hz), respectively. RDCs associated
with different alignment media involve independent alignment tensors, and must
therefore be input in separate restraint files. Additionally, RDCs that stem from dif-
ferent nuclear spin pairs are also input in separate files, as it allows normalization
relative to a reference spin pair (if RDCs have not been pre-normalized) and/or the
assignment of different weights during structure calculations (see below).

3 Methods

3.1 Energy Function

Through changes in atomic positions Xplor-NIH minimizes the potential energy
function

Etotal = Eexpt +Eprior. (1)

Eexpt is associated with the available experimental data; in the present example with
protein GB1,

Eexpt = wdistEdist +wtorsionEtorsion +wRDCERDC, (2)

where subscripts “dist”, “torsion”, and “RDC”, refer to the distance, torsion angle,
and RDC restraints, respectively, and w j is the weight or energy scale for term j (as
in all equations herein). Since the experimental data is insufficient to reliably define
all atom positions, it is supplemented with information known a priori, via the Eprior
energy term,

Eprior = wbondEbond +wangleEangle +wimprEimpr +wrepelErepel +∑
db

wdbEdb, (3)

which relies on values of bond lengths, bond angles, improper dihedral angles that
specify chirality and planarity of functional groups, and van der Waals radii (sub-
scripts “bond”, “angle”, “impr”, and “repel”, respectively). Although not completely
intractable (e.g., see ref. [15]), high computational expense and poor convergence
during conformational sampling challenge a detailed description of electrostatic and
van der Waals interactions. As a result, the latter are represented by a repulsive-only
energy term (Erepel in Eq. 3) that simply discourages atomic overlap [16].

6 Guillermo A. Bermejo and Charles D. Schwieters

The remaining energy terms in Eprior (Eq. 3) are knowledge-based in nature (also
known as empirical or statistical), derived from protein structure databases. Specif-
ically,

∑
db

wdbEdb = wtorsionDBEtorsionDB +whbdbEhbdb, (4)

where Ehbdb represents a hydrogen bond potential used to improve backbone–
backbone hydrogen bond geometry [17], and EtorsionDB represents the torsionDB
potential [18] that acts on torsion angles to improve backbone and side chain con-
formation.

3.2 Conformational Sampling

Minimization of the total potential energy (Eq. 1), starting from an arbitrary, ex-
tended conformation, results in a compactly folded structure. The energy minimiza-
tion is primarily achieved by molecular dynamics with simulated annealing, in a
protocol that comprises the following stages:

1. High Temperature Stage. High temperature molecular dynamics in torsion angle
space with small energy scales, and Cα -only repulsions.

2. Simulated Annealing Stage. Annealing in torsion angle space with energy scales
ramped up, and all-atom repulsions.

3. Torsion Angle Minimization. Gradient minimization in torsion angle space.
4. Cartesian Minimization. Gradient minimization in Cartesian space.

The high temperature stage, with a relatively smooth energy surface and atoms able
to go through each other, is intended for efficient sampling of conformational space.
In the simulated annealing stage, the temperature is gradually decreased, while the
energy surface becomes more restrictive, allowing the system to settle into an energy
minimum. The final minimizations result in small conformational adjustments. A
successful run yields a structure that fits the experimental restraints, has few or no
atomic clashes, and does not deviate significantly from ideal covalent geometry.

3.3 Structure Calculation

Structure calculation protocols are implemented as Python scripts that take advan-
tage of modules specifically written for Xplor-NIH. Below, the script used to calcu-
late and analyze a set of GB1 structures, is discussed. First, the outline of the script
is presented, followed by a detailed description of the script itself.

Structure Elucidation with Xplor-NIH 7

3.3.1 Script Outline

The general script outline of an Xplor-NIH structure calculation protocol is as fol-
lows:

1. System Definition. Define the molecular covalent topology and associated cova-
lent and van der Waals parameters.

2. Extended Structure. Generate a provisional extended molecular conformation.
3. Important Collections. Create empty collections to hold:

a. All energy terms.
b. Objects that handle changes (e.g., energy scale ramping) between and during

the different stages of the protocol (as defined in Subheading 3.2 above).

4. Energy Terms. Set up each energy term and populate the above collections.
5. Degrees of Freedom. Set up objects that define degrees of freedom (e.g., torsion

angle) allowed during the different stages of the protocol (as defined in Subhead-
ing 3.2).

6. Structure Calculation. Define the function that calculates a single structure.
7. Structure Gathering. Define the object that runs the above function N times and

gathers statistics on the resulting structures.

While Python offers considerable flexibility in the implementation of the structure
calculation protocol, this specific outline is dictated by adaptability of the script to
other scenarios. For example, most actions associated with the use of a particular
energy term are condensed into a snippet of adjacent lines of code, which facilitates
the removal of the term when not applicable (e.g., when the associated experimental
data is not available), and, similarly, the addition of extra energy terms. Thus, the
same script can be easily reused for different purposes.

3.3.2 The Script

Below, the complete Python script, named fold.py, is presented in sections that
correspond to those of the outline above. The script lines appear in Listings inter-
spersed with the explanatory main text. A complete uninterrupted version of this
script can be found at the end of this chapter in a Supplemental Listing. The script
can be executed from the command line by typing:

xplor -py fold.py > fold.out

where fold.out is the log file. All modules mentioned below, explicitly (in the
main text) and/or implicitly (in the Listings), are further documented on the web at
http://nmr.cit.nih.gov/xplor-nih/doc/current/python/ref/.
In addition, a commented version of fold.py, along with all the files necessary
to execute it, can be found in the eginput/protein directory distributed with
Xplor-NIH versions 2.45 and later.

http://nmr.cit.nih.gov/xplor-nih/doc/current/python/ref/

8 Guillermo A. Bermejo and Charles D. Schwieters

System Definition

The topology file is a library of amino acid definitions that specifies the atoms
and their covalent connectivity, and provides “patches” for chemical modifications
(e.g., peptide bond, disulfide bridge, N- and C-termini). The topology of a specific
molecule is built from its sequence and stored in the PSF file. Although the PSF
can be generated within the structure calculation script itself, it is recommended to
create the PSF ex situ when the protein is not relatively standard (e.g., there are
post-translational modifications or non-natural amino acids). The latter scenario is
exemplified with protein GB1 (despite being a standard system) in Note 1,which
describes the generation of its PSF, gb1.psf. The protocol module provides a
function to read in the PSF:

Listing 1

import protocol
protocol.initStruct("gb1.psf")

The topology file (and, consequently, the PSF) defines the atoms and covalent
connectivity of the system, but does not contain specific values of bond lengths,
bond angles, improper dihedral angles, and van der Waals radii (respectively re-
quired for energy terms Ebond, Eangle, Eimpr, and Erepel; see Eq. 3 above). Such infor-
mation is provided by the associated parameter file, which is loaded as follows:

Listing 2

protocol.initParams("protein")

where the “protein” keyword specifies the use of the default parameter file for pro-
teins. It is noteworthy that, as with any aspect of Xplor-NIH, topology and parameter
files undergo updates; since old file versions are kept for backwards compatibility,
reliance on the keyword (instead of the specific file name) ensures that the latest
version is being used. (Alternatively, the file name protein.par is a shortcut
to the latest parameter file.) The parameter file loaded must be consistent with the
topology file used to create the PSF. In most instances these files come in pairs.

Extended Structure

Although the protein’s covalent topology and associated parameters are established
at this point, atomic positions are still undefined (or “unknown” in Xplor-NIH termi-
nology). While the structure calculation itself is still many lines away in the script,
some energy terms require valid coordinates for their setup. Thus, an arbitrary ex-
tended conformation is generated with the function genExtendedStructure,
from the protocolmodule. An arbitrary seed number initializes Xplor-NIH’s ran-
dom number generator, which is used in the computation of this conformation and
in subsequent molecular dynamics stages (see Note 2). These two operations are
performed as follows:

Structure Elucidation with Xplor-NIH 9

Listing 3

protocol.initRandomSeed(3421)

protocol.genExtendedStructure()

Important Collections

A PotList instance (from the potList module) is an ordered collection (i.e., a
sequence) specialized to hold objects that represent energy terms. It behaves itself as
an energy term, so that, for example, a PotList that contains several RDC terms
(e.g., associated to different restraint files) evaluates to the sum of its constituent
terms. Although PotList instances are used throughout the script, a particularly
central one is named etotal, created to group all the energy terms that will be
used in the structure calculation (i.e., it corresponds to Etotal in Eq. 1):

Listing 4

from potList import PotList
etotal = PotList()

Other important collections are the regular Python lists highTempParams and
rampedParams:

Listing 5

from simulationTools import MultRamp, StaticRamp, InitialParams

highTempParams = []
rampedParams = []

They are used to handle (i) changes in both energy scales and atomic repulsion se-
tups (e.g., Cα -only versus all-atom interactions) between the high temperature and
simulated annealing stages, and (ii) energy scale ramping within the simulated an-
nealing stage itself. As its name suggests, objects added to highTempParams
deal solely with the high temperature stage. Only instances of MultRamp or
StaticRamp objects (imported here from the simulationTools module) will
be added to highTempParams and rampedParams. The roles of the latter are
exemplified below with the creation and configuration of the different energy terms,
and should become completely clear when the structure calculation function is ex-
plained.

10 Guillermo A. Bermejo and Charles D. Schwieters

Energy Terms

RDC Restraints

The RDC energy term [2] requires the definition of the alignment tensor for each of
the available media. The tensors dictionary, defined below, maps a user-selected
medium name (the key) to the corresponding tensor object (the value). In the gener-
ation of each tensor, an estimate of its axial component Da (Da in the Listing) and
rhombicity (Rh) (e.g., as obtained from the powder pattern method [19]; see Note
3) are provided:

Listing 6

from varTensorTools import create_VarTensor, calcTensorOrientation
tensors = {}
medium Da Rh
for (medium, Da, Rh) in [("tmv107", -6.5, 0.62),

("bicelle", -9.9, 0.23)]:
tensor = create_VarTensor(medium)
tensor.setDa(Da)
tensor.setRh(Rh)
tensors[medium] = tensor

Each molecular alignment tensor is represented by seven pseudoatoms, which
describe the orientation, Da, and the rhombicity. These pseudoatoms do not contact
the protein (i.e., they are “van der Waals-invisible”), are generated automatically,
and, thus, can be almost ignored. They are, however, present at the end of each
output coordinate file, and can be helpful to understand and communicate the nature
of the alignment, for instance, by visualizing the tensor orientation relative to the
structure.

Next, a StaticRamp instance is added to highTempParams, instructing the
function calcTensorOrientation (from the varTensorTools module) to
optimize the orientation of each alignment tensor prior to the high temperature stage:

Listing 7

highTempParams.append(StaticRamp("""
for medium in tensors.values():

calcTensorOrientation(medium)
"""))

The “static” in StaticRamp’s name refers to the fact that the snippet of code used
in its instantiation (i.e., the for loop) will be run as is (as opposed to a MultRamp
instance). This will become obvious below.

Next, the list rdcData is created, packed with the information associated with
each input RDC restraint file (see Table 1). Each item within this list is a tuple that
contains the following information (in this order): the medium’s name, an arbitrary
user-selected experiment name (e.g., ‘NH’ for N–HN RDCs), the path name of the
restraint file, and a relative scale factor.

Structure Elucidation with Xplor-NIH 11

Listing 8

medium expt. restraint file scale
rdcData = [("tmv107", "NH" , "tmv107_nh.tbl", 1),

("tmv107", "NCO", "tmv107_nc.tbl", 0.05),
("tmv107", "HNC", "tmv107_hnc.tbl", 0.108),
("bicelle", "NH" , "bicelles_nh.tbl", 1),
("bicelle", "NCO", "bicelles_nc.tbl", 0.05),
("bicelle", "HNC", "bicelles_hnc.tbl", 0.108)]

The medium’s name is used to identify the corresponding alignment tensor (i.e., it
must be one of those in Listing 6). In this example, the RDCs in the restraint files
have been normalized relative to the N–HN spin pair, which increases the apparent
magnitudes of the less sensitive (therefore, more error prone) non-N–HN RDCs. So
that the latter do not dominate the calculation, their respective contribution to the
RDC energy term will be scaled down by the square of the inverse of the normal-
ization factor. These relative scale constants are specified in the right-most column
in Listing 8. (To use unnormalized RDCs in an Xplor-NIH calculation see Note 4.)

The RDC energy term itself is created next, by looping through each item in
rdcData, and creating an individual energy term associated with the data therein:

Listing 9

from rdcPotTools import create_RDCPot, scale_toNH
rdcs = PotList("rdc")
for (medium, exp, table, scale) in rdcData:

name = "%s_%s" % (exp, medium)
rdc = create_RDCPot(name, table, tensors[medium])
rdc.setScale(scale)
scale_toNH(rdc) # uncomment if unnormalized restraints
rdcs.append(rdc)

etotal.append(rdcs)
rampedParams.append(MultRamp(0.01, 1.0, "rdcs.setScale(VALUE)"))

Specifically, for each loop iteration, a name is generated by combining the experi-
ment and medium names (useful for reporting statistics later on), in turn, used in the
creation of an RDC energy object. The iteration is concluded by setting the energy
term’s relative scale and adding the term to rdcs (a PotList). At loop exit, rdcs
involves the entire RDC dataset and, thus, represents the complete RDC energy term
(i.e., ERDC in Eq. 2), which is added to etotal. Appended to rampedParams is
a MultRamp instance, which defines a range of values (from 0.01 to 1.0) for the
overall RDC energy scale (wRDC in Eq. 2). Throughout the high temperature stage,
the energy scale will be given its “initial” value of 0.01 (i.e., the range’s minimum),
whereas during the simulated annealing stage, it will be geometrically increased
from this minimum to the maximum value of 1.0.

12 Guillermo A. Bermejo and Charles D. Schwieters

Distance Restraints

The NOE energy term is used to implement distance restraints (Edist in Eq. 2). As
opposed to the RDC term above, no loop is required to set up the NOE term, because
all GB1 distance restraints are encapsulated in a single file:

Listing 10

import noePotTools
noe = noePotTools.create_NOEPot(name="noe", file="noe.tbl")
etotal.append(noe)
rampedParams.append(MultRamp(2, 30, "noe.setScale(VALUE)"))

With this caveat, the setup is very similar to that of the RDC term. The energy
object is created by giving it a user-selected name and the path name of the re-
straint file. After being added to etotal, the term is further configured within
rampedParams for energy scale handling, as explained above with the RDC term.

Torsion Angle Restraints

Xplor-NIH inherits facilities from the older XPLOR program on which it is based.
With continued development of Xplor-NIH, older XPLOR facilities have been dep-
recated in favor of rewritten versions, such as the RDC and NOE energy terms dis-
cussed above (see Note 5). The legacy XPLOR energy terms, however, can still be
accessed from Xplor-NIH Python scripts (via the xplorPot module), which is
useful for terms that have no native counterpart in the Python interface. This is the
case of the torsion angle restraint term (Etorsion in Eq. 2) (and other terms below):

Listing 11

from xplorPot import XplorPot
dihedralTable = "dihedral.tbl"
protocol.initDihedrals(dihedralTable)
etotal.append(XplorPot("CDIH"))
highTempParams.append(StaticRamp("etotal[’CDIH’].setScale(10)"))
rampedParams.append(StaticRamp("etotal[’CDIH’].setScale(200)"))

To facilitate reuse of the restraint file’s path name (also required below), it is as-
signed to a variable (dihedralTable). The call to the
protocol.initDihedrals function sets up the term, which is added to
etotal as indicated. As opposed to the RDC and NOE terms above, where the
energy scale is set to be uniform throughout the high temperature stage and ramped
during the simulated annealing stage, here, it is configured to hold (different) uni-
form values in both stages. This is achieved by invoking the highTempParams
list, to which a StaticRamp object is appended, specifying the constant value (of
10.0) for the high temperature stage. Similarly, the StaticRamp instance added to
rampedParams specifies the energy scale value (to 200) for the entire annealing
stage.

Structure Elucidation with Xplor-NIH 13

Knowledge-Based Energy Terms

With all the energy terms associated with experimental data, Eexpt (Eq. 2), already
configured, the first term in Eprior (Eq. 3) that we encounter is the knowledge-based
hydrogen bond term Ehbdb (from Eq. 4) [17]:

Listing 12

protocol.initHBDB()
etotal.append(XplorPot("HBDB"))

Since the overall energy scale of this term remains uniform throughout the en-
tire protocol (i.e., whbdb in Eq. 4 is always one), there is no need for entries in
highTempParams and/or rampedParams. The term is added to etotal as
usual.

Next, the knowledge-based torsion angle energy term, torsionDB (EtorsionDB in
Eq. 4) [18], is configured:

Listing 13

import torsionDBPotTools
torsiondb = torsionDBPotTools.create_TorsionDBPot(name="torsiondb",

system="protein")
etotal.append(torsiondb)
rampedParams.append(MultRamp(0.002, 2, "torsiondb.setScale(VALUE)"))

The similarities with the NOE energy term setup (Listing 10 above) are obvious. It
is noteworthy that, since there is a version of this term for RNA [20], the system
argument is used to choose the correct application upon the term’s creation (i.e.,
“protein” for GB1).

Atomic Repulsions

The generation of the atomic repulsion energy term, and its addition to etotal is
performed as follows:

Listing 14

from repelPotTools import create_RepelPot, initRepel
repel = create_RepelPot("repel")
etotal.append(repel)

The behavior of this term throughout the structure calculation protocol is among the
most complicated, as it not only involves changes in its energy scale (exemplified
with previously discussed terms) but also in the atomic interactions that are active.
During the high temperature stage, only repulsions between “inflated” Cα atoms are
wanted in order to promote efficient conformational sampling. Since this configu-
ration will not change throughout that stage, it is specified with a StaticRamp
instance, correspondingly added to highTempParams:

14 Guillermo A. Bermejo and Charles D. Schwieters

Listing 15

highTempParams.append(StaticRamp("""initRepel(repel,
use14=True,
scale=0.004,
repel=1.2,
moveTol=45,
interactingAtoms=’name CA’
)"""))

Here, noteworthy arguments to the initRepel function are use14, repel, and
interactingAtoms, respectively specifying the use of 1–4 interactions (i.e., be-
tween atoms separated by three bonds), van der Waals radii (stored in the parameter
file) enlarged by a factor of 1.2, and Cα repulsions only. Note that throughout the
text, it is implied that interactions of (i) order lower than 1–4 are never active, and
(ii) order higher than 1–4 are always active.

During the simulated annealing stage, it is required for all atoms, exhibiting re-
alistic radii, to repel each other (excluding 1–4 interactions; see below for an expla-
nation). Since this configuration remains unchanged during that stage, it is specified
with a StaticRamp instance, added to rampedParams:

Listing 16

rampedParams.append(StaticRamp("initRepel(repel, use14=False)"))

The energy scale factor is familiarly configured (e.g., as in the RDC term):

Listing 17

rampedParams.append(MultRamp(0.004, 4, "repel.setScale(VALUE)"))

which specifies the geometrical increase during the simulated annealing stage from
0.004 to 4.

The torsionDB energy term introduced above (Listing 13) affects all the heavy-
atom-based torsion angles of a protein (φ ,ψ,χ1, . . . ,χ4) [18], hence the exclusion
of 1–4 repulsions within the simulated annealing stage (implied in Listing 16 above
with the use14 argument). However, torsion angles of terminal, protonated groups,
such as that involved in methyl rotation, are not considered by torsionDB. Thus, to
prevent eclipsed conformations in such groups, the corresponding 1–4 interactions
are introduced with an extra, repulsive energy term:

Listing 18

import torsionDBPotTools
repel14 = torsionDBPotTools.create_Terminal14Pot("repel14")
etotal.append(repel14)
highTempParams.append(StaticRamp("repel14.setScale(0)"))
rampedParams.append(MultRamp(0.004, 4, "repel14.setScale(VALUE)"))

The StaticRamp instance within highTempParams nullifies the term during
the high temperature stage so that only the wanted Cα repulsions are active.

The two repulsive terms just discussed embody Erepel in Eq. 3.

Structure Elucidation with Xplor-NIH 15

Bond Length, Bond Angle, and Improper Dihedral Energy Terms

The remaining energy terms needed to complete Eprior (Eq. 3) and Etotal (Eq. 1)
are those that involve bond lengths, bond angles, and improper dihedral angles (to
define group chirality and planarity), which are respectively set up below without
introducing any new concepts:

Listing 19

etotal.append(XplorPot("BOND"))

etotal.append(XplorPot("ANGL"))
rampedParams.append(MultRamp(0.4, 1.0, "etotal[’ANGL’].setScale(VALUE)"))

etotal.append(XplorPot("IMPR"))
rampedParams.append(MultRamp(0.1, 1.0, "etotal[’IMPR’].setScale(VALUE)"))

Degrees of Freedom

Having already defined and set up all the energy terms, we focus on the configura-
tion of the degrees of freedom used in the conformational search. This requires the
introduction of IVM objects (from the ivm module, where the initials stand for In-
ternal Variable Module [21]), which are central for performing molecular dynamics
and gradient minimization. Briefly anticipating its functions, an IVM object works
as follows: it is given particular degrees of freedom (e.g., torsion angle), associated
to energy terms, set up according to a conformational sampling technique (e.g., for
molecular dynamics: define the temperature, duration, etc.), and, finally, it is “run”,
which performs the desired sampling operation. At this point in the script, however,
the IVM objects are just created and assigned degrees of freedom, pending further
configuration later on.

The protein evolves in torsion angle space during the entire protocol (see Note
6), except for the final Cartesian minimization stage. Thus, two IVM instances are
created, starting with that configured for torsion angle space:

Listing 20

from ivm import IVM
dyn = IVM()

for tensor in tensors.values():
tensor.setFreedom("fixDa, fixRh") # fix tensor Rh and Da (vary orientation)

protocol.torsionTopology(dyn)

where dyn is the IVM object instance. An IVM object controls the degrees of free-
dom of all the atoms in the system. As previously described, each RDC molecu-

16 Guillermo A. Bermejo and Charles D. Schwieters

lar alignment tensor is represented by a set of (pseudo)atoms, whose degrees of
freedom—and, consequently, the variables they represent, namely, the orientation,
Da, and rhombicity—are therefore under the purview of the IVM object. Since dyn
will be used from the start of the structure calculation, when the protein confor-
mation is far from optimal, the Da and rhombicity of each tensor are fixed to their
initial values (input in Listing 6), as allowing them to vary in an attempted opti-
mization would likely distort them. This is achieved inside the above loop. Finally,
the function protocol.torsionTopology configures the protein’s torsional
setup.

The IVM instance reserved for the final Cartesian minimization stage, minc, is
introduced next:

Listing 21

minc = IVM()

for tensor in tensors.values():
tensor.setFreedom("varyDa, varyRh") # allow all tensor parameters to float

protocol.cartesianTopology(minc)

Since the overall protein shape is not expected to change significantly during that
stage, the Da and rhombicity of each alignment tensor are allowed to vary in order
to optimize them.

Finally, all atoms are given a uniform mass and friction coefficient:

Listing 22

protocol.massSetup()

Structure Calculation

The calculation of a single structure is specified by the function calcOneStructure
defined below. It relies on two useful variables, which correspond to the initial and
final temperatures of the system:

Listing 23

temp_ini = 3500.0
temp_fin = 25.0

The initial temperature of 3500 K (temp ini variable) is that of the high tem-
perature stage, and the starting temperature of the simulated annealing stage. The
final temperature of 25 K (temp fin variable) is that at the end of the simulated
annealing stage.

At this juncture, the protein atoms assume an arbitrary, extended conformation
with satisfied covalent geometry, as produced by the function
protocol.genExtendedStructure early on in the script (see Listing 3).

Structure Elucidation with Xplor-NIH 17

The initial actions of calcOneStructure further modify the starting atomic
coordinates in preparation for the high temperature stage. First, all torsion angles
defined in the dyn IVM instance are randomized:

Listing 24

def calcOneStructure(loopInfo):
"""Calculate a single structure."""

from monteCarlo import randomizeTorsions
randomizeTorsions(dyn)

Second, each torsion angle with an associated torsion angle restraint is set to the
restraint’s target value:

Listing 25

import torsionTools
torsionTools.setTorsionsFromTable(dihedralTable)

[Here is where the dihedralTable variable, assigned to the restraint file path
name in Listing 11 above, becomes useful.] Finally, it is ensured that the covalent
geometry is satisfied:

Listing 26

protocol.fixupCovalentGeom(maxIters=100, useVDW=True)

The reason to start with the correct covalent geometry is that it cannot be im-
proved in the calculations that take place in torsion angle space (i.e., all but the
final Cartesian minimization) (see Note 6). It is also noteworthy that while the func-
tion protocol.fixupCovalentGeom silently performs molecular dynamics
and minimization using the covalent energy terms and atomic repulsions, the latter
(triggered by the useVDW argument) are only enabled sporadically, not necessar-
ily enough to remove atomic clashes. Indeed, the purpose of this function (as well
as protocol.genExtendedStructure) is on correcting the covalent geom-
etry and not atomic contacts. This is certainly not an issue because the generated
structure is intended to go through the high temperature molecular dynamics stage,
where atomic repulsions are also limited.

Before the start of the high temperature stage, the appropriate energy scale values
and atomic repulsive interactions have to be established. This is achieved in the fol-
lowing two lines, which clearly reveal the inner workings of lists highTempParams
and rampedParams:

Listing 27

InitialParams(rampedParams)
InitialParams(highTempParams)

The InitialParams function (discussed for the first time here, but originally
imported from the simulationTools module in Listing 5 above) invokes the
code snippet specified in each MultRamp or StaticRamp instance provided to

18 Guillermo A. Bermejo and Charles D. Schwieters

it in an input list (here, highTempParams or rampedParams); in the case of
a MultRamp instance, it does so with the first value in the associated range. The
above Listing performs InitialParams(highTempParams) after
InitialParams(rampedParams). The effect is to override settings of a com-
mon parameter in rampedParams by those in highTempParams. For exam-
ple, InitialParams(rampedParams) configures repulsive interactions be-
tween all atom types, which is immediately reconfigured to the Cα -only mode
by InitialParams(highTempParams), as desired for the high temperature
stage. By contrast, InitialParams(rampedParams) sets the RDC energy
scale to the initial value of the corresponding MultRamp instance, a setting that
persists because it is not involved in highTempParams.

The stage is now set to configure the IVM object for torsion angle molecular
dynamics. The object dyn has already been set up for torsion angle degrees of
freedom (see Listing 20 above); it remains for the molecular dynamics details to be
specified:

Listing 28

protocol.initDynamics(dyn,
potList=etotal,
bathTemp=temp_ini,
initVelocities=True,
finalTime=100,
numSteps=1000,
printInterval=100)

dyn.setETolerance(temp_ini/100)# used to set step size (default: temp/1000)

Here, with help from the function protocol.initDynamics, the input dyn
is associated with the energy terms in etotal (via the potList argument),
the initial temperature (via the bathTemp argument), and a dynamics duration
(whichever is reached first: 100 ps, as specified by the finalTime argument,
or 1000 molecular dynamics steps, as specified by the numSteps argument). In
addition, it is directed that the initial atomic velocities be randomized (via the
initVelocities argument) to values consistent with the temperature value. The
printInterval argument specifies that every 100 steps of molecular dynamics
a report is printed in the output log file, which details the energy values of each term
in etotal, the kinetic energy, size of the molecular dynamics step and the current
time.

An IVM objects’ eTolerance value (set on the above Listing’s last line) con-
trols the level of energy conservation to follow when determining the time step size
[21]. During high temperature dynamics this value is increased from its default of
T/1000 (where T is the temperature) so that conformational space is more widely
sampled.

Finally, the IVM object is run, thus performing the molecular dynamics task for
which it has been configured:

Structure Elucidation with Xplor-NIH 19

Listing 29

dyn.run()

Since the subsequent simulated annealing stage also relies on torsion angle
molecular dynamics, the dyn IVM object can be repurposed. Here, however, the
temperature will be lowered in discrete steps, and dyn run for each one of them.
With this in mind, dyn’s configuration follows:

Listing 30

protocol.initDynamics(dyn,
finalTime=0.2,
numSteps=100,
printInterval=100)

The configuration is similar to that previously performed (see Listing 28 above),
except that (i) atomic velocities are taken from the end of the previous molecular
dynamics stage (the default behavior of the initVelocities argument, implied
by its absence), (ii) the energy terms are inherited from the previous configura-
tion (etotal) and, therefore, the potList argument is left unspecified, and (iii)
temperature is not specified, in anticipation of its variability within the annealing
schedule. The latter is set up and run via a newly introduced object:

Listing 31

from simulationTools import AnnealIVM
AnnealIVM(initTemp=temp_ini,

finalTemp=temp_fin,
tempStep=12.5,
ivm=dyn,
rampedParams=rampedParams).run()

where the dyn IVM instance is provided (via the ivm argument), and the initial
and final temperatures are specified (via the initTemp and finalTemp argu-
ments, respectively), along with the temperature step (via the tempStep argu-
ment). That is, dyn is run with its latest setup (in Listing 30 above) for each of the
(3500−25)/12.5 values of temperature. The rampedParams list is provided (via
the rampedParams argument). For a MultRamp instance in rampedParams,
the corresponding code snippet is invoked at the beginning of each step (i.e., before
dyn is run), with the involved value geometrically increased in a stepwise fashion
using the associated range; this is the case of energy scales such as, for example,
that of the RDC term, which geometrically increases from 0.01 to 1.0 throughout
the annealing schedule. For a StaticRamp instance in rampedParams, the cor-
responding code snippet is simply invoked as it is at the beginning of each step;
this is the case of the torsion angle restraints’ energy scale, which remains at a con-
stant value of 200, as well as the configuration of atomic repulsions (except for their
energy scaling).

Gradient minimization in torsion angle space follows, not surprisingly relying on
the dyn IVM object, which is configured for the Powell algorithm and run:

20 Guillermo A. Bermejo and Charles D. Schwieters

Listing 32

protocol.initMinimize(dyn,
printInterval=50)

dyn.run()

Gradient minimization in Cartesian space is the final action of the
calcOneStructure function. It relies on the IVM instance minc, already con-
figured with Cartesian degrees of freedom (in Listing 21 above) for this purpose. The
same function protocol.initMinimize above can be used to set up minc for
Powell minimization, which is subsequently run:

Listing 33

protocol.initMinimize(minc,
potList=etotal,
dEPred=10)

minc.run()

Unlike dyn, minc was not assigned the applicable energy terms (etotal) prior
to minimization, hence the need to do it here (via the potList argument). The
dEPred argument provides the Powell conjugate gradient algorithm [22] an esti-
mate of the expected drop in the energy. It has been found that specifying a value of
10 for Cartesian minimization results in better optimization (the value would other-
wise be 10−3).

Structure Gathering

At this point, the end of indentation in the script lines signifies that the calcOneStructure
function definition is finished. It remains to run calcOneStructure N times,
and generate statistics on the resulting structures, a task conveniently handled by a
StructureLoop object (from the simulationTools module), which is setup
and run as follows:

Structure Elucidation with Xplor-NIH 21

Listing 34

from simulationTools import StructureLoop
StructureLoop(numStructures=100,

structLoopAction=calcOneStructure,
doWriteStructures=True,
Arguments for generating structure statistics:
genViolationStats=True,
averageSortPots=[etotal["BOND"], # terms for structure sorting.

etotal["ANGL"],
etotal["IMPR"], noe, rdcs, etotal["CDIH"]],

averageTopFraction=0.1, # top fraction of structs. to report on.
averagePotList=etotal, # terms analyzed.
averageFitSel="not (name H* or PSEUDO)", # selection to fit...
).run() # to average structure...

and report precision.

In this instantiation two kinds of arguments are noted, related to either the structure
calculation or the subsequent structural analysis. numStructures,
structLoopAction, and doWriteStructures belong to the former type,
and respectively specify the total number of structures (N), the function used
in the calculation of each of them (i.e., calcOneStructure), and whether
the corresponding coordinate files (in PDB format) will be written. Each coordi-
nate file is accompanied by an analysis file with the same name, except that the
.viols extension is appended. This file contains information for each term in
argument averagePotList (typically, all the terms used in the structure cal-
culation, i.e., etotal), including detailed information about violations in each
term, atomic clashes, etc. The more global structural analysis is triggered by the
genViolationStats argument, and is based on the top fraction of structures
specified by averageTopFraction, after all structures have been sorted from
low to high energy using the terms in averageSortPots. The results of the
analysis are stored in a file with the .stats extension, which reports on all the
energy terms specified in averagePotList. The .stats file contains averages
of fit metrics for each energy term, and a list of the most violated restraints for each
energy term. averagePotList is also used to compute a regularized average
structure to which the analyzed structures are fit (using the selection string given
in the argument averageFitSel) to report the coordinate precision. Although
not exercised here, the average structure can be written out by specifying the extra
argument averageFilename to StructureLoop. StructureLoop trans-
parently handles simultaneous parallel calculation of multiple structures either on a
local computer with multiple cores, or on a cluster of computers. It is noteworthy
that, after the initial folding, as done here with GB1, structures are usually refined
by running a similar script (see Note 7 for details).

22 Guillermo A. Bermejo and Charles D. Schwieters

4 Notes

1. The PSF file of a standard protein, such as GB1, can be generated directly from
the command line, by using one of the helper programs provided with Xplor-
NIH (within the bin directory of Xplor-NIH’s distribution package). Assuming
GB1’s amino acid sequence is stored in the file gb1.seq (see Subheading 2.2
for more details), the PSF, gb1.psf, is generated simply by typing:

seq2psf gb1.seq

The command automatically recognizes the system type (in this case, protein),
and uses the corresponding default topology file (i.e., the latest version). Alterna-
tively, when a PDB coordinate file is available (e.g., representing a conformation
different from that under study), it can be similarly used to generate the PSF with
the helper program pdb2psf. Additional examples of PSF generation, includ-
ing less standard cases, can be found in Xplor-NIH’s distribution package, within
the directory eginput/PSF generation.

2. Use of the same seed number on the same computer yields the same results.
3. Initial values for the alignment tensor Da and rhombicity can be obtained using

a maximum likelihood approach [19] which is implemented in the Xplor-NIH
helper program calcDaRh. For example, based on the RDCs measured in bi-
celle media for GB1, this program can be run from the command line by typing:

calcDaRh -normtype none bicelles_nh.tbl bicelles_hnc.tbl bicelles_nc.tbl

The -help option of the calcDaRh command can be invoked for more details.
4. It is frequently simpler to use unnormalized RDCs. In such case, the relative en-

ergy scales in Listing 8 should be set to one, and the scale toNH line in Listing
9 should be uncommented. Additionally, the Xplor-NIH convention is for the gy-
romagnetic ratio of 15N to be effectively treated as positive, when it is in fact neg-
ative. If the RDC restraints have not been prepared using the Xplor-NIH conven-
tion, the function correctGyromagneticSigns (from the rdcPotTools
module) should be called before create RDCPot in Listing 9.

5. Care has been taken to ensure that restraint formats supported by the old XPLOR
program [3] are compatible in the newer Xplor-NIH [1, 2].

6. It is tempting (and erroneous) to think that when an IVM object (i.e., an instance
of ivm.IVM) is configured with torsion angle degrees of freedom, as is the case
with dyn in the main text (see Listing 20 above), there is no need to include cova-
lent energy terms (i.e., for bond lengths and angles, and improper dihedral angles)
in molecular dynamics or minimization. Indeed, while a great part of the covalent
geometry remains unchanged in torsion angle space, making such energy terms
unnecessary, some functional groups, however, require them. This is the case for
conformationally flexible rings, such as that of proline residues, which require
one endocyclic bond to behave as a spring (as restrained by the bond energy
term) instead of being rigid. (Note that bond angles and improper dihedral an-
gles involving the atoms in the mentioned bond also need to be restrained by the

Structure Elucidation with Xplor-NIH 23

corresponding terms.) In addition, the default torsion angle configuration of an
IVM object (applied to dyn via the protocol.torsionTopology function
in Listing 20) allows flexibility in the peptide ω angle, increasing the reliance on
covalent energy terms (this behavior is controlled by the optional fixedOmega
argument of the above function).

7. A script for refinement of a reasonable starting structure is quite similar to
fold.py presented above. The per-Listing differences are enumerated here:

a. The call to protocol.genExtendedStructure in Listing 3 should be
replaced by protocol.initCoords(’file.pdb’), where file.pdb
is an input structure file to be refined.

b. The call to calcTensorOrientation in Listing 7 should be replaced
with a call to function calcTensor, after importing it from the
varTensorToolsmodule. This function computes the Da, rhombicity, and
orientation of an input alignment tensor object via singular value decom-
position [23]. This full calculation (as opposed to just the orientation with
calcTensorOrientation) is possible in the refinement case because a
reasonable starting structure is available at the beginning of the calculation.

c. The initial temperature (temp ini in Listing 23) should be lowered to 3000
K.

d. The calls to randomizeTorsions in Listing 24 and to setTorsions in
Listing 25 should be removed.

e. Finally, if one desires to refine more than one structure, a glob wildcard ex-
pression can be specified by adding the pdbFilesIn argument of
StructureLoop in Listing 34 (e.g., pdbFilesIn=’fold*.best’
would refine all the structures whose file names match the pattern
fold*.best).
A refinement script is included in the eginput/protein directory within
the Xplor-NIH distribution (as of version 2.45).

Acknowledgments

This work was supported by the NIH Intramural Research Programs of CIT (to
G.A.B and C.D.S.), NIDDK (through G. Marius Clore), NCI (through R. Andrew
Byrd), and NHLBI (through Nico Tjandra).

Supplemental Listing

File fold.py (a commented version can be found in the eginput/protein
directory within the Xplor-NIH distribution, starting with version 2.45):

24 Guillermo A. Bermejo and Charles D. Schwieters

import protocol
protocol.initStruct("gb1.psf")

protocol.initParams("protein")

protocol.initRandomSeed(3421)

protocol.genExtendedStructure()

from potList import PotList
etotal = PotList()

from simulationTools import MultRamp, StaticRamp, InitialParams

highTempParams = []
rampedParams = []

from varTensorTools import create_VarTensor, calcTensorOrientation
tensors = {}
medium Da Rh
for (medium, Da, Rh) in [("tmv107", -6.5, 0.62),

("bicelle", -9.9, 0.23)]:
tensor = create_VarTensor(medium)
tensor.setDa(Da)
tensor.setRh(Rh)
tensors[medium] = tensor

highTempParams.append(StaticRamp("""
for medium in tensors.values():

calcTensorOrientation(medium)
"""))

medium expt. restraint file scale
rdcData = [("tmv107", "NH" , "tmv107_nh.tbl", 1),

("tmv107", "NCO", "tmv107_nc.tbl", 0.05),
("tmv107", "HNC", "tmv107_hnc.tbl", 0.108),
("bicelle", "NH" , "bicelles_nh.tbl", 1),
("bicelle", "NCO", "bicelles_nc.tbl", 0.05),
("bicelle", "HNC", "bicelles_hnc.tbl", 0.108)]

from rdcPotTools import create_RDCPot, scale_toNH
rdcs = PotList("rdc")
for (medium, exp, table, scale) in rdcData:

name = "%s_%s" % (exp, medium)
rdc = create_RDCPot(name, table, tensors[medium])
rdc.setScale(scale)

Structure Elucidation with Xplor-NIH 25

scale_toNH(rdc) # uncomment if unnormalized restraints
rdcs.append(rdc)

etotal.append(rdcs)
rampedParams.append(MultRamp(0.01, 1.0, "rdcs.setScale(VALUE)"))

import noePotTools
noe = noePotTools.create_NOEPot(name="noe", file="noe.tbl")
etotal.append(noe)
rampedParams.append(MultRamp(2, 30, "noe.setScale(VALUE)"))

from xplorPot import XplorPot
dihedralTable = "dihedral.tbl"
protocol.initDihedrals(dihedralTable)
etotal.append(XplorPot("CDIH"))
highTempParams.append(StaticRamp("etotal[’CDIH’].setScale(10)"))
rampedParams.append(StaticRamp("etotal[’CDIH’].setScale(200)"))

protocol.initHBDB()
etotal.append(XplorPot("HBDB"))

import torsionDBPotTools
torsiondb = torsionDBPotTools.create_TorsionDBPot(name="torsiondb",

system="protein")
etotal.append(torsiondb)
rampedParams.append(MultRamp(0.002, 2, "torsiondb.setScale(VALUE)"))

from repelPotTools import create_RepelPot, initRepel
repel = create_RepelPot("repel")
etotal.append(repel)

highTempParams.append(StaticRamp("""initRepel(repel,
use14=True,
scale=0.004,
repel=1.2,
moveTol=45,
interactingAtoms=’name CA’
)"""))

rampedParams.append(StaticRamp("initRepel(repel, use14=False)"))
rampedParams.append(MultRamp(0.004, 4, "repel.setScale(VALUE)"))

import torsionDBPotTools
repel14 = torsionDBPotTools.create_Terminal14Pot("repel14")

26 Guillermo A. Bermejo and Charles D. Schwieters

etotal.append(repel14)
highTempParams.append(StaticRamp("repel14.setScale(0)"))
rampedParams.append(MultRamp(0.004, 4, "repel14.setScale(VALUE)"))

etotal.append(XplorPot("BOND"))

etotal.append(XplorPot("ANGL"))
rampedParams.append(MultRamp(0.4, 1.0, "etotal[’ANGL’].setScale(VALUE)"))

etotal.append(XplorPot("IMPR"))
rampedParams.append(MultRamp(0.1, 1.0, "etotal[’IMPR’].setScale(VALUE)"))

from ivm import IVM
dyn = IVM()

for tensor in tensors.values():
tensor.setFreedom("fixDa, fixRh") # fix tensor Rh and Da (vary orientation)

protocol.torsionTopology(dyn)

minc = IVM()

for tensor in tensors.values():
tensor.setFreedom("varyDa, varyRh") # allow all tensor parameters to float

protocol.cartesianTopology(minc)

protocol.massSetup()

temp_ini = 3500.0
temp_fin = 25.0

def calcOneStructure(loopInfo):
"""Calculate a single structure."""

from monteCarlo import randomizeTorsions
randomizeTorsions(dyn)

import torsionTools
torsionTools.setTorsionsFromTable(dihedralTable)

protocol.fixupCovalentGeom(maxIters=100, useVDW=True)

Structure Elucidation with Xplor-NIH 27

InitialParams(rampedParams)
InitialParams(highTempParams)

protocol.initDynamics(dyn,
potList=etotal,
bathTemp=temp_ini,
initVelocities=True,
finalTime=100,
numSteps=1000,
printInterval=100)

dyn.setETolerance(temp_ini/100)# used to set step size (default: temp/1000)

dyn.run()

protocol.initDynamics(dyn,
finalTime=0.2,
numSteps=100,
printInterval=100)

from simulationTools import AnnealIVM
AnnealIVM(initTemp=temp_ini,

finalTemp=temp_fin,
tempStep=12.5,
ivm=dyn,
rampedParams=rampedParams).run()

protocol.initMinimize(dyn,
printInterval=50)

dyn.run()

protocol.initMinimize(minc,
potList=etotal,
dEPred=10)

minc.run()

from simulationTools import StructureLoop
StructureLoop(numStructures=100,

structLoopAction=calcOneStructure,
doWriteStructures=True,
Arguments for generating structure statistics:
genViolationStats=True,
averageSortPots=[etotal["BOND"], # terms for structure sorting.

etotal["ANGL"],

28 Guillermo A. Bermejo and Charles D. Schwieters

etotal["IMPR"], noe, rdcs, etotal["CDIH"]],
averageTopFraction=0.1, # top fraction of structs. to report on.
averagePotList=etotal, # terms analyzed.
averageFitSel="not (name H* or PSEUDO)", # selection to fit...
).run() # to average structure...

and report precision.

References

1. Schwieters, CD, Kuszewski, JJ, Tjandra, N and Clore, GM (2003) The Xplor-NIH NMR
molecular structure determination package. J Magn Reson 160:66–74

2. Schwieters, CD, Kuszewski, JJ, and Clore, GM (2006) Using Xplor-NIH for NMR molecular
structure determination. Progr Nucl Magn Reson Spectrosc 48:47–62

3. Brünger, AT (1993) XPLOR Manual Version 3.1. Yale University Press, New Haven. http:
//xplor.csb.yale.edu/xplor-info/

4. Huang, J-r and Grzesiek, S (2010) Ensemble calculations of unstructured proteins con-
strained by RDC and PRE data: a case study of urea-denatured ubiquitin. J Am Chem Soc
132:694–705

5. Iwahara, J, Schwieters, CD and Clore, GM (2004) Ensemble approach for NMR structure re-
finement against 1H paramagnetic relaxation enhancement data arising from a flexible para-
magnetic group attached to a macromolecule. J Am Chem Soc 126:5879–5896

6. Schwieters, CD and Clore, GM (2014) Using small angle solution scattering data in Xplor-
NIH structure calculations. Progr Nucl Magn Reson Spectrosc 80:1–11

7. Gong, Z, Schwieters, CD, Tang, C (2015) Conjoined use of EM and NMR in RNA structure
refinement. Plos One 10:e0120445

8. Clore, GM and Schwieters, CD (2004) How much backbone motion in ubiquitin is required
to account for dipolar coupling data measured in multiple alignment media as assessed by
independent cross-validation. J Am Chem Soc 126:2923–2938

9. Kuszewski J, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of
NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121:2337–
2338

10. https://www.virtualbox.org
11. https://www.vmware.com/products/workstation
12. http://qemu.org/
13. http://python.org
14. Shen, Y and Bax, A (2013) Protein backbone and sidechain torsion angles predicted from

NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241
15. Tian, Y, Schwieters, CD, Opella, SJ, and Marassi FM (2014) A practical implicit solvent

potential for NMR structure calculation. J Magn Res 243:54–64
16. Nilges, M, Clore, GM and Gronenborn, AM (1988) Determination of three-dimensional

structures of proteins from interproton distance data by hybrid distance geometry-dynamical
simulated annealing calculations. FEBS Lett 229:317–324

17. Grishaev, A and Bax, A (2004) An empirical backbone-backbone potential in proteins and
its application to NMR structure refinement and validation. J Am Chem Soc 126:7281–7292

18. Bermejo, GA, Clore, GM, and Schwieters, CD (2012) Smooth statistical torsion angle po-
tential derived from a large conformational database via adaptive kernel density estimation
improves the quality of NMR protein structures. Protein Sci 21:1824–1836

19. Warren, JJ and Moore PB (2001) A maximum likelihood method for determining DPQ
a and R

for sets of dipolar coupling data. J Magn Reson 149:271–275
20. Bermejo, GA, Clore, GM, and Schwieters, CD (2016) Improving NMR structures of RNA.

Structure 24:806–815

http://xplor.csb.yale.edu/xplor-info/
http://xplor.csb.yale.edu/xplor-info/
https://www.virtualbox.org
https://www.vmware.com/products/workstation
http://qemu.org/
http://python.org

Structure Elucidation with Xplor-NIH 29

21. Schwieters, CD, and Clore, GM (2001) Internal coordinates for molecular dynamics and
minimization in structure determination and refinement. J Magn Reson 152:288–302

22. Powell, MJD (1977) Restart procedures for the conjugate gradient method. Math Program
12:241–254

23. Losonczi, JA, Andrec, M, Fischer, MW, and Prestegard, JH (1999) Order matrix analysis of
residual dipolar couplings using singular value decomposition. J Magn Reson 138:334–342

	Protein Structure Elucidation from NMR Data with the Program Xplor-NIH
	Guillermo A. Bermejo and Charles D. Schwieters
	Introduction
	Materials
	Software
	Input Files

	Methods
	Energy Function
	Conformational Sampling
	Structure Calculation

	Notes
	References

