
Xplor-NIH: Recent Developments

Charles Schwieters and John Kuszewski

November 17, 2003

outline

1. description, history

2. Scripting Languages: XPLOR, Python, TCL

• Introduction to Python

3. Potential terms available from Python

4. IVM: dynamics and minimization in internal coordinates

5. Parallel determination of multiple structures

• Using the Biowulf cluster

6. VMD molecular graphics interface

goal of this class:

Xplor-NIH’s Python interface will be introduced, described in enough

detail such that scripts can be understood, and modified.

What is Xplor-NIH?

Biomolecular structure determination/manipulation

• Determine structure using minimization protocols based on molec-

ular dynamics/ simulated annealing.

• Potential energy terms:

– terms based on input from NMR (and X-ray) experiments: NOE,

dipolar coupling, chemical shift data, etc.
– other potential terms enforce reasonable covalent geometry (bonds

and angles).
– knowledge-based potential terms incorporate info from structure

database.

• includes: program, topology, covalent parameters , potential energy

parameters, data for knowledge-based potentials.

[in the future: protocols.]

Automatic NOE Assignment:

• M. Nilges has said that his group will add full ARIA support to

Xplor-NIH.

• John K’s MARVIN auto-assignment facility.

What Xplor-NIH is not

Not general purpose molecular dynamics engine. Major deficiency: no

Ewald summation for long-range electrostatic potentials. Use CHARMM,

Amber, or NAMD.

Crystallography tools are dated. CNS X-ray facilities are more up-to-

date.

But, CNS no longer under development, and its NMR facilities are dated.

→ use Xplor-NIH for NMR structure determination.

Not an NMR spectrum analysis tool.

[future: tighter integration with tools such as NMRWish.]

Scripting Languages- three choices

scripting language:

• flexible interpreted language

• used to input filenames, parameters, protocols

• relatively user-friendly

XPLOR language:

strong point:

selection language quite powerful.

weaknesses:

String, Math support problematic.

no support for functions/subroutines.

Parser is hand-coded in Fortran: difficult to update.

NOTE: all old XPLOR scripts should run unchanged in Xplor-NIH.

general purpose scripting languages: Python and
TCL

• excellent string support.

• languages have functions: can be used to better encapsulate proto-

cols (e.g. call a function to perform simulated annealing.)

• well known: these languages are useful for other computing needs:

replacements for AWK, shell scripting, etc.

• Facilitate interaction, tighter coupling with other tools.

– NMRWish has a TCL interface.
– pyMol has a Python interface.
– VMD has TCL and Python interfaces.

separate processing of input files (assignment tables) is unnecessary:

can all be done using Xplor-NIH.

New development in C++: scripting interfaces (semi-)automatically

generated using a tool called SWIG.

Introduction to Python
assignment and strings
a = ’a string’ # <- pound char introduces a comment

a = "a string" # ’ and " chars have same functionality

multiline strings - use three ’ or " characters
a = ’’’a

multiline

string’’’

C-style string formatting - uses the % operator
s = "a float: %5.2f an integer: %d" % (3.14159, 42)

print s
a float: 3.14 an integer: 42

lists and tuples
l = [1,2,3] #create a list

a = l[1] #indexed from 0 (l = 2)

l[2] = 42 # l is now [1,2,42]

t = (1,2,3) #create a tuple (read-only list)

a = t[1] # a = 2

t[2] = 42 # ERROR!

Introduction to Python

calling functions

bigger = max(4,5) # max is a built-in function

defining functions - whitespace scoping

def sum(a,b):

"return the sum of a and b" # comment string

retVal = a+b # note indentation

return retVal

print sum(42,1) #un-indented line: not in function

43

loops - the for statement

for cnt in range(0,3):

cnt += 10

print cnt

10

11

12

Introduction to Python

Python is modular

most functions live in separate namespaces called modules

The import statement - loading modules

import sys #import module sys

sys.exit(0) #call the function exit in module sys

or:

from sys import exit #import exit function from sys into current scope

exit(0) #don’t need to prepend sys.

Introduction to Python

In Python pretty much everything is an object.

Objects: calling methods

file = open("filename") #open is built-in function returning an object

contents = file.read() #read is a method of this object

returns a string containing file contents

dir(file) # list all methods of file

[’__class__’, ’__delattr__’, ’__doc__’, ’__getattribute__’,

’__hash__’, ’__init__’, ’__iter__’, ’__new__’, ’__reduce__’,

’__repr__’, ’__setattr__’, ’__str__’, ’close’, ’closed’, ’fileno’,

’flush’, ’isatty’, ’mode’, ’name’, ’read’, ’readinto’, ’readline’,

’readlines’, ’seek’, ’softspace’, ’tell’, ’truncate’, ’write’,

’writelines’, ’xreadlines’]

Introduction to Python

interactive help functionality: dir() is your friend!

import sys

dir(sys) #lists names in module sys

dir() # list names in current (global) namespace

dir(1) # list of methods of an integer object

the help function

import ivm

help(ivm) #help on the ivm module

help(open) # help on the built-in function open

Accessing Xplor-NIH’s Python interpreter
from the command-line: use the -py flag
% xplor -py

XPLOR-NIH version 2.9.2

C.D. Schwieters, J.J. Kuszewski, based on X-PLOR 3.851 by A.T. Brunger
N. Tjandra, and G.M. Clore
J. Magn. Res., 160, 66-74 (2003). http://nmr.cit.nih.gov/xplor-nih

python>

from XPLOR: PYTHon command

X-PLOR>python !NOTE: can’t be used inside an XPLOR loop!

python> print ’hello world!’

hello world!

python> python_end()

X-PLOR>

for a single line: CPYThon command

X-PLOR>cpython "print ’hello world!’" !can be used in a loop

hello world!

X-PLOR>

using XPLOR, TCL from Python

to call the XPLOR interpreter from Python

xplor.command(’’’struct @1gb1.psf end

coor @1gb1.pdb’’’)

xplor is a built-in module - no need to import it

to call the TCL interpreter from Python

from tclInterp import TCLInterp #import function

tcl = TCLInterp() #create TCLInterp object

tcl.command(’xplorSim setRandomSeed 778’) #initialize random seed

Atom Selections in Python

use the XPLOR atom selection language.

from atomSel import AtomSel

sel = AtomSel(’’’resid 22:30 and

(name CA or name C or name N)’’’)

print sel.string() #AtomSel objs remember their selection string

resid 22:30 and

(name CA or name C or name N)

AtomSel objects can be used as lists of Atom objects

print len(sel) # prints number of atoms in sel

for atom in sel: # iterate through atoms in sel

print atom.string(), atom.pos()

prints a string identifying the atom, and its position.

Python in Xplor-NIH

current status: low-level functionality (similar to that of XPLOR script)

implemented.

partially implemented: high-level wrapper functions which will encode

default values, and hide complexity.

future: develop repository of still-higher level protocols to further sim-

plify structure determination.

Using potential terms in Python
available potential terms in the following modules:

1. rdcPot - dipolar coupling

2. noePot - NOE distance restraints

3. jCoupPot - 3J-coupling

4. xplorPot - use XPLOR potential terms

5. potList - a collection of potential terms

all potential objects have the following methods:
instanceName() - name given by user
potName() - name of potential term, e.g. ”RDCPot”
scale() - scale factor or weight
setScale(val) - set this weight
calcEnergy() - calculate and return term’s energy

residual dipolar coupling potential

Provides orientational information relative to axis fixed in molecule

frame.

δcalc = Da[(3u2
z − 1) +

3

2
R(u2

x − u2
y)] ,

ux, uy, uz- projection of bond vector onto axes of tensor describing

orientation. Da, R- measure of axial and rhombic tensor components.

rdcPot (in Python)
• tensor orientation encoded in

four axis atoms
• allows Da, R to vary: values en-

coded using extra atoms.
• reads both SANI and DIPO

XPLOR assignment tables.
• allows multiple assignments for

bond-vector atoms - for averag-
ing.

• allows ignoring sign of Da (op-
tional)

• can (optionally) include distance
dependence: Da ∝ 1/r3.

ANI500:Y

ANI500:PA2

ANI500:Z

ANI500:PA1

ANI500:X

How to use the rdcPot potential

from rdcPotTools import * #import all symbols from this module

RDC_addAxisAtoms()

rdcNH = create_RDCPot("NH",file=’NH.tbl’)

rdcNH.setDa(7.8) #set initial tensor properties

rdcNH.setRhombicity(0.3)

calcTensor(rdcNH) #use if the structure is approximately correct

NOTE: no need to have psf files or coordinates for axis/parameter

atoms- this is automatic.

analysis, accessing potential values:

print rdcNH.instanceName() # prints ’NH’
print rdcNH.potName() # prints ’RDCPot’
print rdcNH.rms(), rdcNH.violations() # calculates and prints rms, violations
print rdcHN.Da(), rdcHN.rhombicity() # prints these tensor quantities
rdcNH.setThreshold(0) # violation threshold
print rdcNH.showViolations() # print out list of violated terms
print Rfactor(rdcNH) # calculate and print a quality factor

RDCPot: additional details

using multiple media:

RDC_addAxisAtoms()

rdcNH_2 = create_RDCPot("NH_2",file=’NH_2.tbl’)

#[set initial tensor parameters]

multiple expts. single medium:

rdcCAHA = create_RDCPot("CAHA",resid=rdcNH.oAtom().residueNum(),

file=’CAHA.tbl’)

rdcCAHA is a new potential term using the same alignment tensor as

rdcNH.

Scaling convention: scale factor of non-NH terms is determined using

the experimental error relative to the NH term:

scale_toNH(rdcCAHA,’CAHA’) #rescales relative to NH

scale = (5/2)**2

^ inverse error in expt. measurement relative to that for NH

rdcCAHA.setScale(scale)

NOE potential term

effective NOE distance (sum averaging):

R = (
∑

ij

|qi − qj|
−6)−1/6

Python potential in module noePot

• reads XPLOR-style NOE tables.

• potential object has methods to set averaging type, potential type,

etc.

creating an NOEPot object:

from noePot import NOEPot

noe = NOEPot(’noe’, open(’noe_all.tbl’).read())

analysis:

print noe.rms()

noe.setThreshold(0.1) # violation threshold

print noe.violations() # number of violations

print noe.showViolations()

J-coupling potential

3J = A cos2(θ + θ∗) + B cos(θ + θ∗) + C,

θ is appropriate torsion angle.

A, B, C and θ∗ are set using the COEF statement in the j-coupling

assignment table (or using object methods).

Use in Python

from jCoupPot import JCoupPot

Jhnha = JCoupPot(’hnha’,open(’jna_coup.tbl’).read())

analysis:

print Jhnha.rms()

print Jhnha.violations()

print Jhnha.showViolations()

using XPLOR potentials

Example using a Radius of Gyration (COLLapse) potential

import protocol

from xplorPot import XplorPot

protocol.initCollapse(’resid 3:72’) #specify globular portion

rGyr = XplorPot(’COLL’)

xplor.command(’collapse scale 0.1 end’) #manipulate in XPLOR interface

accessing associated values

print rGyr.calcEnergy().energy #term’s energy

print rGyr.potName() # ’XplorPot’

print rGyr.instanceName() # ’COLL’

all other access/analysis done from XPLOR interface.

Commonly used XPLOR terms: VDW, BOND, ANGL, IMPR, RAMA,

HBDA, CDHI

collections of potentials - PotList

collection potential terms together:

from potList import PotList

pots = PotList()

pots.add(noe); pots.add(Jhnha); pots.add(rGyr)

pots.calcEnergy().energy # total energy

nested PotLists:

rdcs = PotList(’rdcs’) #convenient to collect like terms

rdcs.add(rdcNH); rdcs.add(rdcNH_2)

pots.add(rdcs)

for pot in pots: #pots looks like a list

print pot.instanceName()

noe

hnha

COLL

rdcs

The IVM (internal variable module)

in biomolecular NMR structure determination, many internal coordinates

are known or presumed to take usual values:

• bond lengths, angles.

• aromatic amino acid sidechains

• nucleic acid base regions

• non-interfacial regions of protein and nucleic acid complexes (com-

ponent structures may be known- only interface needs to be deter-

mined)

Can we take advantage of this knowledge (find the minima more effi-

ciently)?

• can take larger MD timesteps (without high freq bond stretching)

• configuration space to search is smaller:

Ntorsion angles ∼ 1/3NCartesian coordinates
• don’t have to worry about messing up known coordinates.

MD in internal coordinates is nontrivial

Consider Newton’s equation:

F = Ma

for MD, we need a, the acceleration in internal coordinates, given forces

F .

Problems:

• express forces in internal coordinates

• solve the equation for a.

In Cartesian coordinates a is (vector of) atomic accelerations. M is

diagonal.

In internal coordinates M is full and varies as a function of time: solving

for a scales as N3
internal coordinates.

Solution: comes to us from the robotics community. Involves clever

solution of Newton’s equation: The molecule is decomposed into a

tree structure, a is solved for by iterating from trunk to branches, and

backwards.

Hierarchical Refinement of the Enzyme II/
HPr complex

active degrees of freedom are displayed in yellow.

Tree Structure of a Molecule

TYR3:CG

TYR3:CD1

1a

2a

3a

4a

5a

6a

7a

8a

9a

10a

11a

12a
13a

14a

15a

16a

8b

11b

atoms are placed in rigid

bodies, fixed with re-

spect to each other.

between the rigid bodies

are “hinges” which allow

appropriate motion

rings and other closed

loops are broken- re-

placed with a bond.

Topology Setup
torsion angle dynamics with fixed region:

from ivm import IVM
from selectTools import groupRigidSideChains, IVM_breakProlines

integrator = IVM() #create an IVM object
integrator.group(groupRidigSideChains()) # keep aromatic regions rigid
IVM_breakProlines(integrator) # break proline rings appropriately
integrator.fix(AtomSel("resid 100:120")) # these atoms are fixed

wrt each other
integrator.autoTorsion() # all other regions have torsion

angles active

rdc topology setup - for tensor atoms

axis should rotate only - not translate.

only single bond angle of Da and rhombicity parameter atoms is signif-

icant.

from rdcPotTools import *

configIVM(rdcNH,integrator) #always call this

Initially, when far from correct structure, fix Da, and rhombicity:

configIVM_fixDa(rdcNH,integrator)

configIVM_fixRhombicity(rdcNH,integrator)

to refine against these:

configIVM_varyDa(rdcNH,integrator)

configIVM_varyRhombicity(rdcNH,integrator)

IVM Implementation details:

other coordinates also possible: e.g. mixing Cartesian, rigid body and

torsion angle motions.

convenient features:

• variable-size timestep algorithm

• will also perform minimization

• facility to constrain bonds which cause loops in tree.

full example script in eginputs/protG/anneal.py of the Xplor-NIH distri-

bution.

dynamics with variable timestep

import protocol

bathTemp=2000

protocol.initDynamics(ivm=integrator, #note: keyword arguments

bathTemp=bathTemp,

potList=pots)

integrator.setFinalTime(1) # will use variable timestep algorithm

integrator.setPrintInterval(10) # print info every ten steps

integrator.run() #perform dynamics

parallel computation of multiple structures

computation of multiple structures with different initial velocities and/or

coordinates: gives idea of precision of NMR structure.

xplor -parallel -machines <machine file>

convenient Xplor-NIH parallelization

• spawns multiple versions of xplor on multiple machines via ssh or

rsh.

• structure and log files collected in the current local directory.

requirements:

• ability to login to remote nodes via ssh or rsh, without password

• shared filesystem which looks the same to each node

following environment variables set: XPLOR NUM PROCESSES, XPLOR PROCESS

example script
from simulationTools import StructureLoop

from pdbTool import PDBTool

def calcOneStructure(structData):

[get initial coordinates, randomize velocities]

[high temp dynamics]

[cooling loop]

[final minimization]

[analysis]

filename = structData.makeFilename(outPDBFilename)

PDBTool(filename).write()

simWorld.setRandomSeed(785)

outPDBFilename = ’SCRIPT_STRUCTURE.sa’

#SCRIPT -> replaced with the name of the input script (e.g. ’anneal.py’)

#STRUCTURE -> replaced with the number of the current structure

StructureLoop(numStructures=100,

structLoopAction=calcOneStructure).run()

Using Biowulf

how to get a Biowulf account:

http://biowulf.nih.gov/user_guide.html#account

on Biowulf, compute jobs are managed using the PBS queuing system:

http://biowulf.nih.gov/user_guide.html#q

submit jobs using qsub:

qsub -l nodes=4 xplor.pbs

note that each node has two CPUs.

example Biowulf PBS script:

http://nmr.cit.nih.gov/xplor-nih/nih/xplor.pbs

http://biowulf.nih.gov/user_guide.html#account
http://biowulf.nih.gov/user_guide.html#q
http://nmr.cit.nih.gov/xplor-nih/nih/xplor.pbs

VMD interface

vmd-xplor screenshot

Use VMD-XPLOR to

• visualize molecular structures

• visualize restraint info

• manually edit structures

command-line invocation of separate Xplor-NIH and VMD-XPLOR jobs:

% vmd-xplor -port 3359 -noxplor

% xplor -port 3359 -py

XPLOR snippet to draw bonds between backbone atoms, and labels:

import vmdInter

vmd = VMDInter()

x = vmd.makeObj("x")

x.bonds(AtomSel("name ca or name c or name n"))

label = vmd.makeObj("label")

label.labels(AtomSel("name ca"))

Graphical Representation of ensembles

Stereoviews illustrating
various representations of
the side chains of Asp23,
Ile29 and Arg59 of the hn-
RNPK KH3-ssDNA complex.
(a) Superposition of the
sidechains of 100 simulated
annealing structures (blue).
(b) and (c) Isosurface of the
reweighted atomic density
map for the three side
chains drawn at a value of
20% of maximum; within
the map, the coordinates
of the sidechains of three
representative structures are
displayed in blue. The view
shown in (b) is identical to
that in (a). The coordinates
of the protein backbone and
the C6 nucleotide of the
restrained regularized mean
structure are shown in red
and green, respectively.

Where to go for help
online:
http://nmr.cit.nih.gov/xplor-nih/ - home page
xplor-nih@nmr.cit.nih.gov - mailing list
http://nmr.cit.nih.gov/xplor-nih/faq.html - FAQ
http://nmr.cit.nih.gov/xplor-nih/xplorMan - XPLOR manual

subdirectories within the xplor distribution:
eginputs - newer complete example scripts
tutorial - respository of XPLOR scripts
helplib - help files
helplib/faq - frequently asked questions

Python:

M. Lutz and D. Ascher, “Learning Python,” (O’Reilly, 1999).

http://python.org

TCL:

J.K. Ousterhout “TCL and the TK Toolkit” (Addison Wesley, 1994).

http://www.tcl.tk

Please complain! and suggest!

http://nmr.cit.nih.gov/xplor-nih/
http://nmr.cit.nih.gov/xplor-nih/faq.html
http://nmr.cit.nih.gov/xplor-nih/xplorMan
http://python.org
http://www.tcl.tk

	intro
	Scripting Languages
	Intro to Python
	Python in Xplor-NIH
	Python in Xplor-NIH
	Xplor-NIH's Potentials in Python
	The internal variable module
	Parallel structure computation
	VMD-XPLOR
	References

